Skip to main content

Advertisement

Log in

Cellular Membrane Fluidity in Amyloid Precursor Protein Processing

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The senile plaque is a pathologic hallmark of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), the main constituent of senile plaques, is neurotoxic especially in its oligomeric form. Aβ is derived from the sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases in the amyloidogenic pathway. Alternatively, APP can be cleaved by α-secretases within the Aβ domain to produce neurotrophic and neuroprotective α-secretase-cleaved soluble APP (sAPPα) in the nonamyloidogenic pathway. Since APP and α-, β-, and γ-secretases are membrane proteins, APP processing should be highly dependent on the membrane composition and the biophysical properties of cellular membrane. In this review, we discuss the role of the biophysical properties of cellular membrane in APP processing, especially the effects of phospholipases A2 (PLA2s), fatty acids, cholesterol, and Aβ on membrane fluidity in relation to their effects on APP processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Larson ME, Lesne SE (2012) Soluble Abeta oligomer production and toxicity. J Neurochem 120(Suppl 1):125–139

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Vassar R (2004) BACE1: the beta-secretase enzyme in Alzheimer's disease. J Mol Neurosci 23:105–114

    PubMed  CAS  Google Scholar 

  3. Haass C, Kaether C, Thinakaran G, Sisodia S (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270

    PubMed  PubMed Central  Google Scholar 

  4. Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C (2006) Soluble amyloid precursor protein alpha reduces neuronal injury and improves functional outcome following diffuse traumatic brain injury in rats. Brain Res 1094:38–46

    PubMed  CAS  Google Scholar 

  5. Cheng H, Vetrivel KS, Gong P, Meckler X, Parent A, Thinakaran G (2007) Mechanisms of disease: new therapeutic strategies for Alzheimer's disease—targeting APP processing in lipid rafts. Nat Clin Pract Neurol 3:374–382

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Winkler E, Kamp F, Scheuring J, Ebke A, Fukumori A, Steiner H (2012) Generation of Alzheimer disease-associated Abeta42/43 by gamma-secretase can directly be inhibited by modulation of membrane thickness. J Biol Chem 287:21326–21334

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Haass C, Hung AY, Schlossmacher MG, Teplow DB, Selkoe DJ (1993) Beta-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268:3021–3024

    PubMed  CAS  Google Scholar 

  8. Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid beta-protein involves the endocytic pathway. J Biol Chem 269:17386–17389

    PubMed  CAS  Google Scholar 

  9. Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 100:11735–11740

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Kaether C, Haass C (2004) A lipid boundary separates APP and secretases and limits amyloid beta-peptide generation. J Cell Biol 167:809–812

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Marlow L, Cain M, Pappolla MA, Sambamurti K (2003) Beta-secretase processing of the Alzheimer's amyloid protein precursor (APP). J Mol Neurosci 20:233–239

    PubMed  CAS  Google Scholar 

  13. Tun H, Marlow L, Pinnix I, Kinsey R, Sambamurti K (2002) Lipid rafts play an important role in A beta biogenesis by regulating the beta-secretase pathway. J Mol Neurosci 19:31–35

    PubMed  CAS  Google Scholar 

  14. Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC et al (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 279:44945–44954

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Reid PC, Urano Y, Kodama T, Hamakubo T (2007) Alzheimer's disease: cholesterol, membrane rafts, isoprenoids and statins. J Cell Mol Med 11:383–392

    PubMed  CAS  Google Scholar 

  16. Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, Aid S et al (2004) Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev 44:509–538

    PubMed  CAS  Google Scholar 

  17. Liu MS, Ghosh S, Yang Y (1983) Change in membrane lipid fluidity induced by phospholipase A activation: a mechanism of endotoxic shock. Life Sci 33:1995–2002

    PubMed  CAS  Google Scholar 

  18. Schaeffer EL, Bassi F Jr, Gattaz WF (2005) Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J Neural Transm 112:641–647

    PubMed  CAS  Google Scholar 

  19. Hibbeln JR, Umhau JC, George DT, Shoaf SE, Linnoila M, Salem N Jr (2000) Plasma total cholesterol concentrations do not predict cerebrospinal fluid neurotransmitter metabolites: implications for the biophysical role of highly unsaturated fatty acids. Am J Clin Nutr 71:331S–338S

    PubMed  CAS  Google Scholar 

  20. Sinclair AJ, Begg D, Mathai M, Weisinger RS (2007) Omega 3 fatty acids and the brain: review of studies in depression. Asia Pac J Clin Nutr 16(Suppl 1):391–397

    PubMed  CAS  Google Scholar 

  21. Yang X, Sheng W, Sun GY, Lee JC (2011) Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int 58:321–329

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Peters I, Igbavboa U, Schutt T, Haidari S, Hartig U, Rosello X, Bottner S et al (2009) The interaction of beta-amyloid protein with cellular membranes stimulates its own production. Biochim Biophys Acta 1788:964–972

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Giuffrida ML, Tomasello F, Caraci F, Chiechio S, Nicoletti F, Copani A (2012) Beta-amyloid monomer and insulin/IGF-1 signaling in Alzheimer's disease. Mol Neurobiol 46:605–613

    PubMed  CAS  Google Scholar 

  24. Demuro A, Parker I, Stutzmann GE (2010) Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem 285:12463–12468

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Yamin G (2009) NMDA receptor-dependent signaling pathways that underlie amyloid beta-protein disruption of LTP in the hippocampus. J Neurosci Res 87:1729–1736

    PubMed  CAS  Google Scholar 

  26. Xie CW (2004) Calcium-regulated signaling pathways: role in amyloid beta-induced synaptic dysfunction. Neuromol Med 6:53–64

    CAS  Google Scholar 

  27. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Zhou L, Nilsson A (2001) Sources of eicosanoid precursor fatty acid pools in tissues. J Lipid Res 42:1521–1542

    PubMed  CAS  Google Scholar 

  29. Moses GS, Jensen MD, Lue LF, Walker DG, Sun AY, Simonyi A, Sun GY (2006) Secretory PLA2-IIA: a new inflammatory factor for Alzheimer's disease. J Neuroinflammation 3:28

    PubMed  PubMed Central  Google Scholar 

  30. Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620

    PubMed  CAS  Google Scholar 

  31. Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16

    PubMed  CAS  Google Scholar 

  32. Yedgar S, Cohen Y, Shoseyov D (2006) Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim Biophys Acta 1761:1373–1382

    PubMed  CAS  Google Scholar 

  33. Sun GY, Xu J, Jensen MD, Yu S, Wood WG, Gonzalez FA, Simonyi A et al (2005) Phospholipase A2 in astrocytes: responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol Neurobiol 31:27–41

    PubMed  CAS  Google Scholar 

  34. Desbene C, Malaplate-Armand C, Youssef I, Garcia P, Stenger C, Sauvee M, Fischer N et al (2012) Critical role of cPLA2 in Abeta oligomer-induced neurodegeneration and memory deficit. Neurobiol Aging 33(1123):e1117–e1129

    Google Scholar 

  35. Sun GY, He Y, Chuang DY, Lee JC, Gu Z, Simonyi A, Sun AY (2012) Integrating cytosolic phospholipase A(2) with oxidative/nitrosative signaling pathways in neurons: a novel therapeutic strategy for AD. Mol Neurobiol 46:85–95

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Gentile MT, Reccia MG, Sorrentino PP, Vitale E, Sorrentino G, Puca AA, Colucci-D'Amato L (2012) Role of cytosolic calcium-dependent phospholipase A2 in Alzheimer's disease pathogenesis. Mol Neurobiol 45:596–604

    PubMed  CAS  Google Scholar 

  37. Stephenson DT, Lemere CA, Selkoe DJ, Clemens JA (1996) Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer's disease brain. Neurobiol Dis 3:51–63

    PubMed  CAS  Google Scholar 

  38. Stephenson D, Rash K, Smalstig B, Roberts E, Johnstone E, Sharp J, Panetta J et al (1999) Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128

    PubMed  CAS  Google Scholar 

  39. Colangelo V, Schurr J, Ball MJ, Pelaez RP, Bazan NG, Lukiw WJ (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosc Res 70:462–473

    CAS  Google Scholar 

  40. Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B, Cisse M et al (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease. Nat Neurosci 11:1311–1318

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Kriem B, Sponne I, Fifre A, Malaplate-Armand C, Lozac'h-Pillot K, Koziel V, Yen-Potin FT et al (2005) Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. Faseb J 19:85–87

    PubMed  CAS  Google Scholar 

  42. Yang X, Askarova S, Sheng W, Chen JK, Sun AY, Sun GY, Yao G et al (2010) Low energy laser light (632.8 nm) suppresses amyloid-beta peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience 171:859–868

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26:11111–11119

    PubMed  CAS  Google Scholar 

  44. Chalimoniuk M, Stolecka A, Cakala M, Hauptmann S, Schulz K, Lipka U, Leuner K et al (2007) Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells. Acta Biochim Pol 54:611–623

    PubMed  CAS  Google Scholar 

  45. Askarova S, Yang X, Sheng W, Sun GY, Lee JC (2011) Role of Abeta-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A(2) activation in astrocytes and cerebral endothelial cells. Neuroscience 199:375–385

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Gattaz WF, Cairns NJ, Levy R, Forstl H, Braus DF, Maras A (1996) Decreased phospholipase A2 activity in the brain and in platelets of patients with Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 246:129–131

    PubMed  CAS  Google Scholar 

  47. Gattaz WF, Maras A, Cairns NJ, Levy R, Forstl H (1995) Decreased phospholipase A2 activity in Alzheimer brains. Biol Psychiatry 37:13–17

    PubMed  CAS  Google Scholar 

  48. Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Phospholipid-metabolizing enzymes in Alzheimer's disease: increased lysophospholipid acyltransferase activity and decreased phospholipase A2 activity. J Neurochem 70:786–793

    PubMed  CAS  Google Scholar 

  49. Forlenza OV, Schaeffer EL, Gattaz WF (2007) The role of phospholipase A2 in neuronal homeostasis and memory formation: implications for the pathogenesis of Alzheimer's disease. J Neural Transm 114:231–238

    PubMed  CAS  Google Scholar 

  50. Cho HW, Kim JH, Choi S, Kim HJ (2006) Phospholipase A2 is involved in muscarinic receptor-mediated sAPPalpha release independently of cyclooxygenase or lypoxygenase activity in SH-SY5Y cells. Neurosci Lett 397:214–218

    PubMed  CAS  Google Scholar 

  51. Yang X, Sheng W, He Y, Cui J, Haidekker MA, Sun GY, Lee JC (2010) Secretory phospholipase A2 type III enhances alpha-secretase-dependent amyloid precursor protein processing through alterations in membrane fluidity. J Lipid Res 51:957–966

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Villacara A, Spatz M, Dodson RF, Corn C, Bembry J (1989) Effect of arachidonic acid on cultured cerebromicrovascular endothelium: permeability, lipid peroxidation and membrane “fluidity”. Acta Neuropathol 78:310–316

    PubMed  CAS  Google Scholar 

  53. Beck R, Bertolino S, Abbot SE, Aaronson PI, Smirnov SV (1998) Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells. Circ Res 83:923–931

    PubMed  CAS  Google Scholar 

  54. Fukaya T, Gondaira T, Kashiyae Y, Kotani S, Ishikura Y, Fujikawa S, Kiso Y et al (2007) Arachidonic acid preserves hippocampal neuron membrane fluidity in senescent rats. Neurobiol Aging 28:1179–1186

    PubMed  CAS  Google Scholar 

  55. Eckert GP, Chang S, Eckmann J, Copanaki E, Hagl S, Hener U, Muller WE et al (2011) Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochim Biophys Acta 1808:236–243

    PubMed  CAS  Google Scholar 

  56. Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 98:5815–5820

    PubMed  CAS  PubMed Central  Google Scholar 

  57. von Arnim CA, von Einem B, Weber P, Wagner M, Schwanzar D, Spoelgen R, Strauss WL et al (2008) Impact of cholesterol level upon APP and BACE proximity and APP cleavage. Biochem Biophys Res Commun 370:207–212

    Google Scholar 

  58. Cirrito JR, Kang JE, Lee J, Stewart FR, Verges DK, Silverio LM, Bu G et al (2008) Endocytosis is required for synaptic activity-dependent release of amyloid-beta in vivo. Neuron 58:42–51

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT (2003) Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 116:3339–3346

    PubMed  CAS  Google Scholar 

  60. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, Schwille P et al (2008) Efficient inhibition of the Alzheimer's disease {beta}-secretase by membrane targeting. Science 320:520–523

    PubMed  CAS  Google Scholar 

  61. Schobel S, Neumann S, Hertweck M, Dislich B, Kuhn PH, Kremmer E, Seed B et al (2008) A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein. J Biol Chem 283:14257–14268

    PubMed  Google Scholar 

  62. Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer's disease: intracellular pathways to pathogenesis. Neuron 52:15–31

    PubMed  CAS  Google Scholar 

  63. Schuchardt JP, Huss M, Stauss-Grabo M, Hahn A (2010) Significance of long-chain polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. Eur J Pediatr 169:149–164

    PubMed  CAS  Google Scholar 

  64. Dyall SC, Michael-Titus AT (2008) Neurological benefits of omega-3 fatty acids. Neuromol Med 10:219–235

    CAS  Google Scholar 

  65. Bazan NG, Scott BL (1990) Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses. Ups J Med Sci Suppl 48:97–107

    PubMed  CAS  Google Scholar 

  66. Holman RT, Johnson SB, Ogburn PL (1991) Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci U S A 88:4835–4839

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    PubMed  CAS  Google Scholar 

  68. Carrie I, Abellan Van Kan G, Rolland Y, Gillette-Guyonnet S, Vellas B (2009) PUFA for prevention and treatment of dementia? Curr Pharm Des 15:4173–4185

    PubMed  CAS  Google Scholar 

  69. Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fat Acids 70:361–372

    CAS  Google Scholar 

  70. Heinrichs SC (2010) Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 54:447–456

    PubMed  CAS  Google Scholar 

  71. Hashimoto M, Hossain S, Shimada T, Sugioka K, Yamasaki H, Fujii Y, Ishibashi Y et al (2002) Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. J Neurochem 81:1084–1091

    PubMed  CAS  Google Scholar 

  72. Khan WA, Blobe GC, Hannun YA (1995) Arachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cell Signal 7:171–184

    PubMed  CAS  Google Scholar 

  73. Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138:2515–2520

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Leskovjan AC, Kretlow A, Miller LM (2010) Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease. Anal Chem 82:2711–2716

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Igarashi M, Ma K, Gao F, Kim HW, Rapoport SI, Rao JS (2011) Disturbed choline plasmalogen and phospholipid fatty acid concentrations in Alzheimer's disease prefrontal cortex. J Alzheimers Dis 24:507–517

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Eckert GP, Lipka U, Muller WE (2013) Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fat Acids 88:105–114

    CAS  Google Scholar 

  77. Tully AM, Roche HM, Doyle R, Fallon C, Bruce I, Lawlor B, Coakley D et al (2003) Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer's disease: a case-control study. Br J Nutr 89:483–489

    PubMed  CAS  Google Scholar 

  78. Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL et al (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol 63:1545–1550

    PubMed  Google Scholar 

  79. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP et al (2009) Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T et al (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39:168–177

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Hooijmans CR, Van der Zee CE, Dederen PJ, Brouwer KM, Reijmer YD, van Groen T, Broersen LM et al (2009) DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiol Dis 33:482–498

    PubMed  CAS  Google Scholar 

  82. Hjorth E, Zhu M, Toro VC, Vedin I, Palmblad J, Cederholm T, Freund-Levi Y et al (2013) Omega-3 fatty acids enhance phagocytosis of Alzheimer's disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. J Alzheimers Dis 35:697–713

    PubMed  Google Scholar 

  83. Calon F, Lim GP, Morihara T, Yang F, Ubeda O, Salem N Jr, Frautschy SA et al (2005) Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease. Eur J Neurosci 22:617–626

    PubMed  Google Scholar 

  84. Pepe S (2007) Dietary polyunsaturated fatty acids and age-related membrane changes in the heart. Ann N Y Acad Sci 1114:381–388

    PubMed  CAS  Google Scholar 

  85. Shaikh SR, Edidin M (2008) Polyunsaturated fatty acids and membrane organization: elucidating mechanisms to balance immunotherapy and susceptibility to infection. Chem Phys Lipids 153:24–33

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Aricha B, Fishov I, Cohen Z, Sikron N, Pesakhov S, Khozin-Goldberg I, Dagan R et al (2004) Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J Bacteriol 186:4638–4644

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Cader AA, Butterfield DA, Watkins BA, Chung BH, Hennig B (1995) Electron spin resonance studies of fatty acid-induced alterations in membrane fluidity in cultured endothelial cells. Int J Biochem Cell Biol 27:665–673

    PubMed  CAS  Google Scholar 

  88. Stillwell W, Shaikh SR, Zerouga M, Siddiqui R, Wassall SR (2005) Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod Nutr Dev 45:559–579

    PubMed  CAS  Google Scholar 

  89. Loffhagen N, Hartig C, Babel W (2004) Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci Biotechnol Biochem 68:317–323

    PubMed  CAS  Google Scholar 

  90. Zavodnik IB, Zaborowski A, Niekurzak A, Bryszewska M (1997) Effect of free fatty acids on erythrocyte morphology and membrane fluidity. Biochem Mol Biol Int 42:123–133

    PubMed  CAS  Google Scholar 

  91. Hashimoto M, Hossain S, Shido O (2006) Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol Cell Biochem 293:1–8

    PubMed  CAS  Google Scholar 

  92. McLauren Dorrance A, Graham D, Dominiczak A, Fraser R (2000) Inhibition of nitric oxide synthesis increases erythrocyte membrane fluidity and unsaturated fatty acid content. Am J Hypertens 13:1194–1202

    PubMed  CAS  Google Scholar 

  93. Calder PC, Yaqoob P, Harvey DJ, Watts A, Newsholme EA (1994) Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem J 300(Pt 2):509–518

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Kitagawa S, Kotani K, Kametani F (1990) Inhibitory mechanism of cis-polyunsaturated fatty acids on platelet aggregation: the relation with their effects on Ca2+ mobilization, cyclic AMP levels and membrane fluidity. Biochim Biophys Acta 1054:114–118

    PubMed  CAS  Google Scholar 

  95. Grimm MO, Haupenthal VJ, Rothhaar TL, Zimmer VC, Grosgen S, Hundsdorfer B, Lehmann J et al (2013) Effect of different phospholipids on alpha-secretase activity in the non-amyloidogenic pathway of Alzheimer's disease. Int J Mol Sci 14:5879–5898

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Grimm MO, Rothhaar TL, Grosgen S, Burg VK, Hundsdorfer B, Haupenthal VJ, Friess P et al (2012) Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP). J Nutr Biochem 23:1214–1223

    PubMed  CAS  Google Scholar 

  97. Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    PubMed  CAS  Google Scholar 

  98. Oksman M, Iivonen H, Hogyes E, Amtul Z, Penke B, Leenders I, Broersen L et al (2006) Impact of different saturated fatty acid, polyunsaturated fatty acid and cholesterol containing diets on beta-amyloid accumulation in APP/PS1 transgenic mice. Neurobiol Dis 23:563–572

    PubMed  CAS  Google Scholar 

  99. Hooijmans CR, Rutters F, Dederen PJ, Gambarota G, Veltien A, van Groen T, Broersen LM et al (2007) Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol Dis 28:16–29

    PubMed  CAS  Google Scholar 

  100. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N Jr et al (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25:3032–3040

    PubMed  CAS  Google Scholar 

  101. Sahlin C, Pettersson FE, Nilsson LN, Lannfelt L, Johansson AS (2007) Docosahexaenoic acid stimulates non-amyloidogenic APP processing resulting in reduced Abeta levels in cellular models of Alzheimer's disease. Eur J Neurosci 26:882–889

    PubMed  Google Scholar 

  102. Liu Y, Yang L, Conde-Knape K, Beher D, Shearman MS, Shachter NS (2004) Fatty acids increase presenilin-1 levels and [gamma]-secretase activity in PSwt-1 cells. J Lipid Res 45:2368–2376

    PubMed  CAS  Google Scholar 

  103. Barenholz Y (2004) Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell Biochem 37:167–215

    PubMed  CAS  Google Scholar 

  104. Fantini J, Yahi N (2010) Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med 12:e27

    PubMed  PubMed Central  Google Scholar 

  105. Burns MP, Igbavboa U, Wang L, Wood WG, Duff K (2006) Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromol Med 8:319–328

    CAS  Google Scholar 

  106. Eckert GP, Kirsch C, Leutz S, Wood WG, Muller WE (2003) Cholesterol modulates amyloid beta-peptide's membrane interactions. Pharmacopsychiatry 36(Suppl 2):S136–S143

    PubMed  CAS  Google Scholar 

  107. Eckert GP, Reik C, Muller WE (2013) Simvastatin alters membrane cholesterol distribution and beta-amyloid levels in brains of female APP751SL mice. Pharmazie 68:590–594

    PubMed  CAS  Google Scholar 

  108. Arrais D, Martins J (2007) Bilayer polarity and its thermal dependency in the l(o) and l(d) phases of binary phosphatidylcholine/cholesterol mixtures. Biochim Biophys Acta 1768:2914–2922

    PubMed  CAS  Google Scholar 

  109. Halling KK, Ramstedt B, Slotte JP (2008) Glycosylation induces shifts in the lateral distribution of cholesterol from ordered towards less ordered domains. Biochim Biophys Acta 1778:1100–1111

    PubMed  CAS  Google Scholar 

  110. Chen Q, Amaral J, Biancani P, Behar J (1999) Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology 116:678–685

    PubMed  CAS  Google Scholar 

  111. Dumas D, Latger V, Viriot ML, Blondel W, Stoltz JF (1999) Membrane fluidity and oxygen diffusion in cholesterol-enriched endothelial cells. Clin Hemorheol Microcirc 21:255–261

    PubMed  CAS  Google Scholar 

  112. Socaciu C, Jessel R, Diehl HA (2000) Competitive carotenoid and cholesterol incorporation into liposomes: effects on membrane phase transition, fluidity, polarity and anisotropy. Chem Phys Lipids 106:79–88

    PubMed  CAS  Google Scholar 

  113. Wang D, Schreurs BG (2010) Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons. Neurosci Lett 479:327–331

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Hao M, Mukherjee S, Sun Y, Maxfield FR (2004) Effects of cholesterol depletion and increased lipid unsaturation on the properties of endocytic membranes. J Biol Chem 279:14171–14178

    PubMed  CAS  Google Scholar 

  115. Burns MP, Rebeck GW (2010) Intracellular cholesterol homeostasis and amyloid precursor protein processing. Biochim Biophys Acta 1801:853–859

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Colell A, Fernandez A, Fernandez-Checa JC (2009) Mitochondria, cholesterol and amyloid beta peptide: a dangerous trio in Alzheimer disease. J Bioenerg Biomembr 41:417–423

    PubMed  CAS  Google Scholar 

  117. Eckert GP, Kirsch C, Muller WE (2003) Brain-membrane cholesterol in Alzheimer's disease. J Nutr Health Aging 7:18–23

    PubMed  CAS  Google Scholar 

  118. Grimm MO, Kuchenbecker J, Grosgen S, Burg VK, Hundsdorfer B, Rothhaar TL, Friess P et al (2011) Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic mechanisms. J Biol Chem 286:14028–14039

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Kosicek M, Malnar M, Goate A, Hecimovic S (2010) Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts. Biochem Biophys Res Commun 393:404–409

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Luneva OG, Brazhe NA, Maksimova NV, Rodnenkov OV, Parshina EY, Bryzgalova NY, Maksimov GV et al (2007) Ion transport, membrane fluidity and haemoglobin conformation in erythrocyte from patients with cardiovascular diseases: role of augmented plasma cholesterol. Pathophysiology 14:41–46

    PubMed  CAS  Google Scholar 

  121. Colell A, Garcia-Ruiz C, Lluis JM, Coll O, Mari M, Fernandez-Checa JC (2003) Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 278:33928–33935

    PubMed  CAS  Google Scholar 

  122. Rog T, Stimson LM, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M (2008) Replacing the cholesterol hydroxyl group with the ketone group facilitates sterol flip-flop and promotes membrane fluidity. J Phys Chem B 112:1946–1952

    PubMed  CAS  Google Scholar 

  123. Galbete JL, Martin TR, Peressini E, Modena P, Bianchi R, Forloni G (2000) Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J 348(Pt 2):307–313

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Xiu J, Nordberg A, Qi X, Guan ZZ (2006) Influence of cholesterol and lovastatin on alpha-form of secreted amyloid precursor protein and expression of alpha7 nicotinic receptor on astrocytes. Neurochem Int 49:459–465

    PubMed  CAS  Google Scholar 

  125. Clement AB, Gimpl G, Behl C (2010) Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radic Biol Med 48:1236–1241

    PubMed  CAS  Google Scholar 

  126. Marquer C, Devauges V, Cossec JC, Liot G, Lecart S, Saudou F, Duyckaerts C et al (2011) Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. Faseb J 25:1295–1305

    PubMed  CAS  Google Scholar 

  127. Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ et al (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Buffone MG, Verstraeten SV, Calamera JC, Doncel GF (2009) High Cholesterol Content and Decreased Membrane Fluidity in Human Spermatozoa Are Associated With Protein Tyrosine Phosphorylation and Functional Deficiencies. J Androl 30:552–558

    PubMed  CAS  Google Scholar 

  129. Racchi M, Baetta R, Salvietti N, Ianna P, Franceschini G, Paoletti R, Fumagalli R et al (1997) Secretory processing of amyloid precursor protein is inhibited by increase in cellular cholesterol content. Biochem J 322(Pt 3):893–898

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Liu WW, Todd S, Coulson DT, Irvine GB, Passmore AP, McGuinness B, McConville M et al (2009) A novel reciprocal and biphasic relationship between membrane cholesterol and beta-secretase activity in SH-SY5Y cells and in human platelets. J Neurochem 108:341–349

    PubMed  CAS  Google Scholar 

  131. Bodovitz S, Klein WL (1996) Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 271:4436–4440

    PubMed  CAS  Google Scholar 

  132. Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP et al (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and Abeta production. J Biol Chem 278:31261–31268

    PubMed  CAS  Google Scholar 

  133. Cossec JC, Simon A, Marquer C, Moldrich RX, Leterrier C, Rossier J, Duyckaerts C et al (2010) Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta 1801:846–852

    PubMed  CAS  Google Scholar 

  134. Runz H, Rietdorf J, Tomic I, de Bernard M, Beyreuther K, Pepperkok R, Hartmann T (2002) Inhibition of intracellular cholesterol transport alters presenilin localization and amyloid precursor protein processing in neuronal cells. J Neurosci 22:1679–1689

    PubMed  CAS  Google Scholar 

  135. Friedman R, Pellarin R, Caflisch A (2009) Amyloid aggregation on lipid bilayers and its impact on membrane permeability. J Mol Biol 387:407–415

    PubMed  CAS  Google Scholar 

  136. Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41:7385–7390

    PubMed  CAS  Google Scholar 

  137. Terzi E, Holzemann G, Seelig J (1997) Interaction of Alzheimer beta-amyloid peptide(1-40) with lipid membranes. Biochemistry 36:14845–14852

    PubMed  CAS  Google Scholar 

  138. Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Buchsteiner A, Hauss T, Dante S, Dencher NA (2010) Alzheimer's disease amyloid-beta peptide analogue alters the ps-dynamics of phospholipid membranes. Biochim Biophys Acta 1798:1969–1976

    PubMed  CAS  Google Scholar 

  140. Eckert GP, Wood WG, Muller WE (2010) Lipid membranes and beta-amyloid: a harmful connection. Curr Protein Pept Sci 11:319–325

    PubMed  CAS  Google Scholar 

  141. Murray IV, Sindoni ME, Axelsen PH (2005) Promotion of oxidative lipid membrane damage by amyloid beta proteins. Biochemistry 44:12606–12613

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Yao JK, Wengenack TM, Curran GL, Poduslo JF (2009) Reduced membrane lipids in the cortex of Alzheimer's disease transgenic mice. Neurochem Res 34:102–108

    PubMed  CAS  Google Scholar 

  143. Williamson R, Usardi A, Hanger DP, Anderton BH (2008) Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. Faseb J 22:1552–1559

    PubMed  CAS  Google Scholar 

  144. Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, Fidelio GD (2005) Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1-42: a membrane-disrupting peptide. Biophys J 88:2706–2713

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Bokvist M, Lindstrom F, Watts A, Grobner G (2004) Two types of Alzheimer's beta-amyloid (1-40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    PubMed  CAS  Google Scholar 

  146. Lansbury PT Jr (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A 96:3342–3344

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Nag S, Chen J, Irudayaraj J, Maiti S (2010) Measurement of the attachment and assembly of small amyloid-beta oligomers on live cell membranes at physiological concentrations using single-molecule tools. Biophys J 99:1969–1975

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Jang H, Zheng J, Lal R, Nussinov R (2008) New structures help the modeling of toxic amyloidbeta ion channels. Trends Biochem Sci 33:91–100

    PubMed  CAS  Google Scholar 

  149. McLaurin J, Chakrabartty A (1996) Membrane disruption by Alzheimer beta-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. Implications for neurotoxicity. J Biol Chem 271:26482–26489

    PubMed  CAS  Google Scholar 

  150. Widenbrant MJ, Rajadas J, Sutardja C, Fuller GG (2006) Lipid-induced beta-amyloid peptide assemblage fragmentation. Biophys J 91:4071–4080

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Kawahara M, Arispe N, Kuroda Y, Rojas E (1997) Alzheimer's disease amyloid beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised membrane patches from hypothalamic neurons. Biophys J 73:67–75

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Liguori N, Nerenberg PS, Head-Gordon T (2013) Embedding Abeta42 in heterogeneous membranes depends on cholesterol asymmetries. Biophys J 105:899–910

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Hicks JB, Lai Y, Sheng W, Yang X, Zhu D, Sun GY, Lee JC (2008) Amyloid-beta peptide induces temporal membrane biphasic changes in astrocytes through cytosolic phospholipase A2. Biochim Biophys Acta 1778:2512–2519

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Parasassi T, Gratton E, Yu WM, Wilson P, Levi M (1997) Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 72:2413–2429

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Parasassi T, Di Stefano M, Ravagnan G, Sapora O, Gratton E (1992) Membrane aging during cell growth ascertained by Laurdan generalized polarization. Exp Cell Res 202:432–439

    PubMed  CAS  Google Scholar 

  156. Arispe N, Pollard HB, Rojas E (1996) Zn2+ interaction with Alzheimer amyloid beta protein calcium channels. Proc Natl Acad Sci U S A 93:1710–1715

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Valincius G, Heinrich F, Budvytyte R, Vanderah DJ, McGillivray DJ, Sokolov Y, Hall JE et al (2008) Soluble amyloid beta-oligomers affect dielectric membrane properties by bilayer insertion and domain formation: implications for cell toxicity. Biophys J 95:4845–4861

    PubMed  CAS  PubMed Central  Google Scholar 

  158. Alarcon JM, Brito JA, Hermosilla T, Atwater I, Mears D, Rojas E (2006) Ion channel formation by Alzheimer's disease amyloid beta-peptide (Abeta40) in unilamellar liposomes is determined by anionic phospholipids. Peptides 27:95–104

    PubMed  CAS  Google Scholar 

  159. Arispe N, Diaz JC, Simakova O (2007) Abeta ion channels. Prospects for treating Alzheimer's disease with Abeta channel blockers. Biochim Biophys Acta 1768:1952–1965

    PubMed  CAS  Google Scholar 

  160. Lal R, Lin H, Quist AP (2007) Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 1768:1966–1975

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Vaisid T, Kosower NS, Elkind E, Barnoy S (2008) Amyloid beta peptide toxicity in differentiated PC12 cells: calpain-calpastatin, caspase, and membrane damage. J Neurosci Res 86:2314–2325

    PubMed  CAS  Google Scholar 

  163. Sepulveda FJ, Parodi J, Peoples RW, Opazo C, Aguayo LG (2010) Synaptotoxicity of Alzheimer beta amyloid can be explained by its membrane perforating property. PLoS One 5:e11820

    PubMed  PubMed Central  Google Scholar 

  164. Blanchard BJ, Thomas VL, Ingram VM (2002) Mechanism of membrane depolarization caused by the Alzheimer Abeta1-42 peptide. Biochem Biophys Res Commun 293:1197–1203

    PubMed  CAS  Google Scholar 

  165. Eckert GP, Wood WG, Muller WE (2001) Effects of aging and beta-amyloid on the properties of brain synaptic and mitochondrial membranes. J Neural Transm 108:1051–1064

    PubMed  CAS  Google Scholar 

  166. Yip CM, Darabie AA, McLaurin J (2002) Abeta42-peptide assembly on lipid bilayers. J Mol Biol 318:97–107

    PubMed  CAS  Google Scholar 

  167. Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318

    PubMed  CAS  Google Scholar 

  168. Li Y, Wang JJ, Cai JX (2007) Aniracetam restores the effects of amyloid-beta protein or ageing on membrane fluidity and intracellular calcium concentration in mice synaptosomes. J Neural Transm 114:1407–1411

    PubMed  CAS  Google Scholar 

  169. Muller WE, Koch S, Eckert A, Hartmann H, Scheuer K (1995) beta-Amyloid peptide decreases membrane fluidity. Brain Res 674:133–136

    PubMed  CAS  Google Scholar 

  170. Hashimoto M, Hossain S, Shimada T, Shido O (2006) Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clin Exp Pharmacol Physiol 33:934–939

    PubMed  CAS  Google Scholar 

  171. Wong PT, Schauerte JA, Wisser KC, Ding H, Lee EL, Steel DG, Gafni A (2009) Amyloid-beta membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity. J Mol Biol 386:81–96

    PubMed  CAS  Google Scholar 

  172. Drago D, Bettella M, Bolognin S, Cendron L, Scancar J, Milacic R, Ricchelli F et al (2008) Potential pathogenic role of beta-amyloid(1-42)-aluminum complex in Alzheimer's disease. Int J Biochem Cell Biol 40:731–746

    PubMed  CAS  Google Scholar 

  173. Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O'Hare EO, Wood WG (2001) Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297

    PubMed  CAS  Google Scholar 

  174. Qi XL, Xiu J, Shan KR, Xiao Y, Gu R, Liu RY, Guan ZZ (2005) Oxidative stress induced by beta-amyloid peptide(1-42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem Int 46:613–621

    PubMed  CAS  Google Scholar 

  175. Murray IV, Liu L, Komatsu H, Uryu K, Xiao G, Lawson JA, Axelsen PH (2007) Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins. J Biol Chem 282:9335–9345

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Vestergaard MC, Morita M, Hamada T, Takagi M (2013) Membrane fusion and vesicular transformation induced by Alzheimer's amyloid beta. Biochim Biophys Acta 1828:1314–1321

    PubMed  CAS  Google Scholar 

  177. Hyun DH, Mughal MR, Yang H, Lee JH, Ko EJ, Hunt ND, de Cabo R et al (2010) The plasma membrane redox system is impaired by amyloid beta-peptide and in the hippocampus and cerebral cortex of 3xTgAD mice. Exp Neurol 225:423–429

    PubMed  CAS  PubMed Central  Google Scholar 

  178. Igbavboa U, Sun GY, Weisman GA, He Y, Wood WG (2009) Amyloid beta-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes. Neuroscience 162:328–338

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Pan HJ, Wang RL, Xiao JL, Chang YJ, Cheng JY, Chen YR, Lee CH (2014) Using optical profilometry to characterize cell membrane roughness influenced by amyloid-beta 42 aggregates and electric fields. J Biomed Opt 19:011009

    PubMed  Google Scholar 

  180. Minano-Molina AJ, Espana J, Martin E, Barneda-Zahonero B, Fado R, Sole M, Trullas R et al (2011) Soluble oligomers of amyloid-beta peptide disrupt membrane trafficking of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor contributing to early synapse dysfunction. J Biol Chem 286:27311–27321

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Ji SR, Wu Y, Sui SF (2002) Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (A beta 1-40), which may potentially inhibit the fibril formation. J Biol Chem 277:6273–6279

    PubMed  CAS  Google Scholar 

  182. Curtain CC, Ali FE, Smith DG, Bush AI, Masters CL, Barnham KJ (2003) Metal ions, pH, and cholesterol regulate the interactions of Alzheimer's disease amyloid-beta peptide with membrane lipid. J Biol Chem 278:2977–2982

    PubMed  CAS  Google Scholar 

  183. Kirsch C, Eckert GP, Mueller WE (2002) Cholesterol attenuates the membrane perturbing properties of beta-amyloid peptides. Amyloid 9:149–159

    PubMed  CAS  Google Scholar 

  184. Avdulov NA, Chochina SV, Igbavboa U, Warden CS, Vassiliev AV, Wood WG (1997) Lipid binding to amyloid beta-peptide aggregates: preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J Neurochem 69:1746–1752

    PubMed  CAS  Google Scholar 

  185. Di Scala C, Yahi N, Lelievre C, Garmy N, Chahinian H, Fantini J (2013) Biochemical identification of a linear cholesterol-binding domain within Alzheimer's beta amyloid peptide. ACS Chem Neurosci 4:509–517

    PubMed  PubMed Central  Google Scholar 

  186. Di Scala C, Troadec JD, Lelievre C, Garmy N, Fantini J, Chahinian H (2014) Mechanism of cholesterol-assisted oligomeric channel formation by a short Alzheimer beta-amyloid peptide. J Neurochem 128:186–195

    PubMed  Google Scholar 

  187. Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C et al (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 167:953–960

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gunter P. Eckert or James C-M. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Sun, G.Y., Eckert, G.P. et al. Cellular Membrane Fluidity in Amyloid Precursor Protein Processing. Mol Neurobiol 50, 119–129 (2014). https://doi.org/10.1007/s12035-014-8652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8652-6

Keywords

Navigation