Skip to main content

Advertisement

Log in

Neurodegeneration in Parkinson's Disease: Interactions of Oxidative Stress, Tryptophan Catabolites and Depression with Mitochondria and Sirtuins

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The biological underpinnings to the etiology and course of neurodegeneration in Parkinson's disease are an area of extensive research that has yet to produce an early biological marker or disease-slowing or preventative treatment. Recent conceptualizations of Parkinson's disease have integrated immuno-inflammation and oxidative and nitrosative stress occurring in depression, somatization and peripheral inflammation into the course of Parkinson's disease. We review the data showing the importance of immuno-inflammatory processes and oxidative and nitrosative stress in such classically conceived ‘comorbidities’, suggesting that lifetime, prodromal and concurrent depression and somatization may be intricately involved in the etiology and course of Parkinson's disease, rather than psychiatric comorbidities. This produces a longer term developmental perspective of Parkinson's disease, which incorporates tryptophan catabolites (TRYCATs), lipid peroxidation, sirtuins, cyclic adenosine monophosphate, aryl hydrocarbon receptor, and circadian genes. This integrates wider bodies of data pertaining to neuronal loss in Parkinson's disease, emphasizing how these interact with susceptibility genes to drive changes in mitochondria, blood–brain barrier permeability and intercellular signalling. We review this data here in the context of neurodegeneration in Parkinson's disease and to the future directions indicated for slowing disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang A, Costello S, Cockburn M, Zhang X, Bronstein J, Ritz B (2011) Parkinson's disease risk from ambient exposure to pesticides. Eur J Epidemiol 26:547–555

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson's disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58

    PubMed  Google Scholar 

  3. Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM (2013) The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides. Toxicology 307:17–23

    CAS  PubMed  Google Scholar 

  4. Anderson G, Maes M (2013) TRYCAT pathways link peripheral inflammation, nicotine, somatization and depression in the etiology and course of Parkinson's disease. CNS Neurol Dis Drug Targets (in press)

  5. Liebau C, Baltzer AW, Schmidt S, Roesel C, Karreman C, Prisack JB, Bojar H, Merk H (2002) Interleukin-12 and interleukin-18 induce indoleamine 2,3-dioxygenase (IDO) activity in human osteosarcoma cell lines independently from interferon-gamma. Anticancer Res 22(2A):931–936

    CAS  PubMed  Google Scholar 

  6. Thomas SR, Salahifar H, Mashima R, Hunt NH, Richardson DR, Stocker R (2001) Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate. J Immunol 166:6332–6340

    CAS  PubMed  Google Scholar 

  7. Ren S, Correia MA (2000) Heme: a regulator of rat hepatic tryptophan 2,3-dioxygenase. Arch Biochem Biophys 377(1):195–203

    CAS  PubMed  Google Scholar 

  8. Luchowska E, Kloc R, Olajossy B, Wnuk S, Wielosz M, Owe-Larsson B, Urbanska EM (2009) Beta-adrenergic enhancement of brain kynurenic acid production mediated via cAMP-related protein kinase A signalling. Prog Neuropsychopharmacol Biol Psychiatry 33(3):519–529

    CAS  PubMed  Google Scholar 

  9. Guillemin GJ, Smythe G, Takikawa O, Brew BJ (2005) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49(1):15–23

    PubMed  Google Scholar 

  10. Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH (2012) Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. Mov Disord 27(6):716–719

    PubMed  Google Scholar 

  11. Videnovic A, Golombek D (2013) Circadian and sleep disorders in Parkinson's disease. Exp Neurol 243:45–56

    PubMed  Google Scholar 

  12. Bugalho P, da Silva JA, Cargaleiro I, Serra M, Neto B (2012) Psychiatric symptoms screening in the early stages of Parkinson's disease. J Neurol 259(1):124–131

    PubMed  Google Scholar 

  13. Maes M, Rief W (2012) Diagnostic classifications in depression and somatization should include biomarkers, such as disorders in the tryptophan catabolite (TRYCAT) pathway. Psychiatry Res 196:243–249

    CAS  PubMed  Google Scholar 

  14. Anderson G, Maes M, Berk M (2012) Biological underpinnings of the commonalities in depression, somatization, and chronic fatigue syndrome. Med Hypotheses 78:752–756

    PubMed  Google Scholar 

  15. Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L (2005) Kynurenine metabolism in plasma and in red blood cells in Parkinson's disease. J Neurol Sci 239(1):31–35

    CAS  PubMed  Google Scholar 

  16. Knyihár-Csillik E, Chadaide Z, Mihály A, Krisztin-Péva B, Fenyo R, Vécsei L (2006) Effect of 6-hydroxydopamine treatment on kynurenine aminotransferase-I (KAT-I) immunoreactivity of neurons and glial cells in the rat substantia nigra. Acta Neuropathol 112(2):127–137

    PubMed  Google Scholar 

  17. Silva-Adaya D, Pérez-De La Cruz V, Villeda-Hernández J, Carrillo-Mora P, González-Herrera IG, García E, Colín-Barenque L, Pedraza-Chaverrí J, Santamaría A (2011) Protective effect of L-kynurenine and probenecid on 6-hydroxydopamine-induced striatal toxicity in rats: implications of modulating kynurenate as a protective strategy. Neurotoxicol Teratol 33(2):303–312

    CAS  PubMed  Google Scholar 

  18. Schuck PF, Tonin A, da Costa Ferreira G, Viegas CM, Latini A, Duval Wannmacher CM, de Souza Wyse AT, Dutra-Filho CS, Wajner M (2007) Kynurenines impair energy metabolism in rat cerebral cortex. Cell Mol Neurobiol 27(1):147–160

    CAS  PubMed  Google Scholar 

  19. Leipnitz G, Schumacher C, Scussiato K, Dalcin KB, Wannmacher CM, Wyse AT, Dutra-Filho CS, Wajner M, Latini A (2005) Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. Int J Dev Neurosci 23(8):695–701

    CAS  PubMed  Google Scholar 

  20. Leipnitz G, Schumacher C, Dalcin KB, Scussiato K, Solano A, Funchal C, Dutra-Filho CS, Wyse AT, Wannmacher CM, Latini A, Wajner M (2007) In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochem Int 50(1):83–94

    CAS  PubMed  Google Scholar 

  21. Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM (2012) Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37(4):939–949

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR (2010) Peripheral and cerebral metabolic abnormalities of the tryptophan–kynurenine pathway in a murine model of major depression. Behav Brain Res 210(1):84–91

    CAS  PubMed  Google Scholar 

  23. Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR (2011) Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: focus on individual differences. Pharmacol Biochem Behav 98:161–168

    CAS  PubMed  Google Scholar 

  24. Maes M, Bosmans E, Scharpé S, D'Hondt P, Desnyder R (1995) Plasma soluble interleukin-2-receptor in depression: relationships to plasma neopterin and serum IL-2 concentrations and HPA-axis activity. Eur Psychiatry 10(8):397–403

    CAS  PubMed  Google Scholar 

  25. Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E (2007) The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression—and other conditions characterized by tryptophan depletion induced by inflammation. Neuro Endocrinol Lett 28(6):826–831

    CAS  PubMed  Google Scholar 

  26. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, Neunlist M, Derkinderen P (2012) Colonic inflammation in Parkinson's disease. Neurobiol Dis 50C:42–48

    Google Scholar 

  27. Hernández-Romero MC, Delgado-Cortés MJ, Sarmiento M, de Pablos RM, Espinosa-Oliva AM, Argüelles S, Bández MJ, Villarán RF, Mauriño R, Santiago M, Venero JL, Herrera AJ, Cano J, Machado A (2012) Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology 33(3):347–360

    PubMed  Google Scholar 

  28. Widner B, Leblhuber F, Fuchs D (2002) Increased neopterin production and tryptophan degradation in advanced Parkinson's disease. J Neural Transm 109(2):181–189

    CAS  PubMed  Google Scholar 

  29. Lewitt PA (2012) Norepinephrine: the next therapeutics frontier for Parkinson's disease. Transl Neurodegener 1(1):4

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Bekar LK, Wei HS, Nedergaard M (2012) The locus coeruleus–norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand. J Cereb Blood Flow Metab 32(12):2135–2145

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Del Tredici K, Braak H (2013) Dysfunction of the locus coeruleus–norepinephrine system and related circuitry in Parkinson's disease-related dementia. J Neurol Neurosurg Psychiatry 84(7):774–783

    PubMed  Google Scholar 

  32. Muñoz P, Huenchuguala S, Paris I, Cuevas C, Villa M, Caviedes P, Segura-Aguilar J, Tizabi Y (2012) Protective effects of nicotine against aminochrome-induced toxicity in substantia nigra derived cells: implications for Parkinson's disease. Neurotox Res 22(2):177–180

    PubMed Central  PubMed  Google Scholar 

  33. Jeyarasasingam G, Tompkins L, Quik M (2002) Stimulation of non-alpha7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture. Neuroscience 109(2):275–285

    CAS  PubMed  Google Scholar 

  34. Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Gundavarapu S, Langley RJ, Razani-Boroujerdi S, Sopori ML (2010) Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. J Immunol 185(1):588–596

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Quik M, Perez XA, Bordia T (2012) Nicotine as a potential neuroprotective agent for Parkinson's disease. Mov Disord 27(8):947–957

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gegg ME, Beltran B, Salas-Pino S, Bolanos JP, Clark JB, Moncada S, Heales SJ (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86(1):228–237

    CAS  PubMed  Google Scholar 

  37. Rathinam ML, Watts LT, Narasimhan M, Riar AK, Mahimainathan L, Henderson GI (2012) Astrocyte mediated protection of fetal cerebral cortical neurons from rotenone and paraquat. Environ Toxicol Pharmacol 33(2):353–360

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Bilska A, Dubiel M, Sokołowska-Jezewicz M, Lorenc-Koci E, Włodek L (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146(4):1758–1771

    CAS  PubMed  Google Scholar 

  39. Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK (2013) Alteration in glutathione content and associated enzyme activities in the synaptic terminals but not in the non-synaptic mitochondria from the frontal cortex of Parkinson's disease brains. Neurochem Res 38(1):186–200

    CAS  PubMed  Google Scholar 

  40. Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson's disease: is this the elephant in the room? Biomed Pharmacother 62(4):236–249

    CAS  PubMed  Google Scholar 

  41. More SS, Vince R (2012) Potential of a γ-glutamyl-transpeptidase-stable glutathione analogue against amyloid-β toxicity. ACS Chem Neurosci 3(3):204–210

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Nafia I, Re DB, Masmejean F, Melon C, Kachidian P, Kerkerian-Le Goff L, Nieoullon A, Had-Aissouni L (2008) Preferential vulnerability of mesencephalic dopamine neurons to glutamate transporter dysfunction. J Neurochem 105(2):484–496

    CAS  PubMed  Google Scholar 

  43. Chinta SJ, Kumar JM, Zhang H, Forman HJ, Andersen JK (2006) Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson's disease. Free Radic Biol Med 40(9):1557–1563

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee A, Anderson AR, Rayfield AJ, Stevens MG, Poronnik P, Meabon JS, Cook DG, Pow DV (2012) Localisation of novel forms of glutamate transporters and the cystine-glutamate antiporter in the choroid plexus: implications for CSF glutamate homeostasis. J Chem Neuroanat 43(1):64–75

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Jackman NA, Uliasz TF, Hewett JA, Hewett SJ (2010) Regulation of system x(c)(−)activity and expression in astrocytes by interleukin-1β: implications for hypoxic neuronal injury. Glia 58(15):1806–1815

    PubMed  Google Scholar 

  46. Crockett S, Clarke M, Reeves S, Sims B (2011) Cystine glutamate exchanger upregulation by retinoic acid induces neuroprotection in neural stem cells. Neuroreport 22(12):598–602

    CAS  PubMed  Google Scholar 

  47. Mattox ML, D'Angelo JA, Grimes ZM, Fiebiger E, Dickinson BL (2012) The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells. Am J Clin Exp Immunol 1(2):113–123

    PubMed Central  PubMed  Google Scholar 

  48. Tavano F, di Mola FF, Latiano A, Palmieri O, Bossa F, Valvano MR, Latiano T, Annese V, Andriulli A, di Sebastiano P (2012) Neuroimmune interactions in patients with inflammatory bowel diseases: disease activity and clinical behavior based on substance P serum levels. J Crohns Colitis 6:563–570

    PubMed  Google Scholar 

  49. Thornton E, Vink R. Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson's disease. PLoS One 7(4):e34138

  50. Chu JM, Chen LW, Chan YS, Yung KK (2011) Neuroprotective effects of neurokinin receptor one in dopaminergic neurons are mediated through Akt/PKB cell signaling pathway. Neuropharmacology 61(8):1389–1398

    CAS  PubMed  Google Scholar 

  51. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2007) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123:398–410

    PubMed  Google Scholar 

  52. Block ML, Li G, Qin L, Wu X, Pei Z, Wang T, Wilson B, Yang J, Hong JS (2006) Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20(2):251–258

    CAS  PubMed  Google Scholar 

  53. Levesque M, Wallman MJ, Parent R, Sik A, Parent A (2007) Neurokinin-1 and neurokinin-3 receptors in primate substantia nigra. Neurosci Res 57:362–371

    CAS  PubMed  Google Scholar 

  54. Reid MS, Herrera-Marschitz M, Hokfelt T, Lindefors N, Persson H, Ungerstedt U (1990) Striatonigral GABA, dynorphin, substance P and neurokinin A modulation of nigrostriatal dopamine release: evidence for direct regulatory mechanisms. Exp Brain Res 82:293–303

    CAS  PubMed  Google Scholar 

  55. Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G (2013) The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 85:1405–1416

    CAS  PubMed  Google Scholar 

  56. Akahoshi E, Yoshimura S, Uruno S, Ishihara-Sugano M (2009) Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study. Environ Health 8:24

    PubMed Central  PubMed  Google Scholar 

  57. Maaetoft-Udsen K, Shimoda LM, Frøkiær H, Turner H (2012) Aryl hydrocarbon receptor ligand effects in RBL2H3 cells. J Immunotoxicol 9(3):327–337

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Filbrandt CR, Wu Z, Zlokovic B, Opanashuk L, Gasiewicz TA (2004) Presence and functional activity of the aryl hydrocarbon receptor in isolated murine cerebral vascular endothelial cells and astrocytes. Neurotoxicology 25(4):605–616

    CAS  PubMed  Google Scholar 

  59. Tsuji G, Takahara M, Uchi H, Matsuda T, Chiba T, Takeuchi S, Yasukawa F, Moroi Y, Furue M (2012) Identification of ketoconazole as an AhR-Nrf2 activator in cultured human keratinocytes: the basis of its anti-inflammatory effect. J Invest Dermatol 132(1):59–68

    CAS  PubMed  Google Scholar 

  60. Rico de Souza A, Zago M, Pollock SJ, Sime PJ, Phipps RP, Baglole CJ (2011) Genetic ablation of the aryl hydrocarbon receptor causes cigarette smoke-induced mitochondrial dysfunction and apoptosis. J Biol Chem 286(50):43214–43228

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Kim SS, Moon KR, Choi HJ (2011) Interference of alpha-synuclein with cAMP/PKA-dependent CREB signaling for tyrosine hydroxylase gene expression in SK-N-BE(2)C cells. Arch Pharm Res 34(5):837–845

    CAS  PubMed  Google Scholar 

  62. Oesch-Bartlomowicz B, Oesch F (2009) Role of cAMP in mediating AHR signaling. Biochem Pharmacol 77:627–641

    CAS  PubMed  Google Scholar 

  63. O'Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320:949–953

    PubMed Central  PubMed  Google Scholar 

  64. Beaule C, Swanstrom A, Leone MJ, Herzog ED (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS ONE 4:e7476

    PubMed Central  PubMed  Google Scholar 

  65. Cai Y, Liu S, Sothern RB, Xu S, Chan P (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson's disease. Eur J Neurol 17(4):550–554

    CAS  PubMed  Google Scholar 

  66. Hayashi A, Matsunaga N, Okazaki H, Kakimoto K, Kimura Y, Azuma H, Ikeda E, Shiba T, Yamato M, Yamada KI, Koyanagi S, Ohdo S (2013) A disruption mechanism of the molecular clock in a MPTP mouse model of Parkinson's disease. Neuromolecular Med 15(2):238–251

    CAS  PubMed  Google Scholar 

  67. Kudo T, Loh DH, Truong D, Wu Y, Colwell CS (2011) Circadian dysfunction in a mouse model of Parkinson's disease. Exp Neurol 232(1):66–75

    PubMed  Google Scholar 

  68. Hua P, Liu W, Kuo SH, Zhao Y, Chen L, Zhang N, Wang C, Guo S, Wang L, Xiao H, Kwan JY, Wu T (2012) Association of Tef polymorphism with depression in Parkinson disease. Mov Disord 27(13):1694–1697

    PubMed  Google Scholar 

  69. Lin Q, Ding H, Zheng Z, Gu Z, Ma J, Chen L, Chan P, Cai Y (2012) Promoter methylation analysis of seven clock genes in Parkinson's disease. Neurosci Lett 507(2):147–150

    CAS  PubMed  Google Scholar 

  70. Hood S, Cassidy P, Cossette MP, Weigl Y, Verwey M, Robinson B, Stewart J, Amir S (2010) Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci 30(42):14046–14058

    CAS  PubMed  Google Scholar 

  71. Ye Q, Ye L, Xu X, Huang B, Zhang X, Zhu Y, Chen X (2012) Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement Altern Med 12:82

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Maes M, Mihaylova I, Kubera M, Leunis JC, Geffard M (2011) IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: new pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord 135(1–3):414–418

    CAS  PubMed  Google Scholar 

  73. Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11(5):523–529

    CAS  PubMed  Google Scholar 

  74. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER, Mizuno Y (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci U S A 93:2696–2701

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ (1999) 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 72:1617–1624

    CAS  PubMed  Google Scholar 

  76. Shin Y, White BH, Uh M, Sidhu A (2003) Modulation of D1-like dopamine receptor function by aldehydic products of lipid peroxidation. Brain Res 968(1):102–113

    CAS  PubMed  Google Scholar 

  77. Jinsmaa Y, Florang VR, Rees JN, Anderson DG, Strack S, Doorn JA (2009) Products of oxidative stress inhibit aldehyde oxidation and reduction pathways in dopamine catabolism yielding elevated levels of a reactive intermediate. Chem Res Toxicol 22(5):835–841

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Chen J, Wang X, Yi X, Wang Y, Liu Q, Ge R (2013) Induction of KLF4 contributes to the neurotoxicity of MPP+ in M17 cells: a new implication in Parkinson's disease. J Mol Neurosci 51(1):109–117

    CAS  PubMed  Google Scholar 

  79. Fritz KS, Galligan JJ, Smathers RL, Roede JR, Shearn CT, Reigan P, Petersen DR (2011) 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem Res Toxicol 24(5):651–662

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F, Chang Y (2010) Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One 5(7):e11707

    PubMed Central  PubMed  Google Scholar 

  81. Anderson G, Maes M (2013) Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharmacol Design (in press)

  82. Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J (2011) Depression's multiple comorbidities explained by (neuro)inflammatory and oxidative & nitrosative stress pathways. Neuroendocrinol Lett 32(1):7–24

    CAS  PubMed  Google Scholar 

  83. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ (2012) Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7(7):e42357

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sheline CT, Zhu J, Zhang W, Shi C, Cai AL (2013) Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. Neurodegener Dis 11(1):49–58

    PubMed  Google Scholar 

  85. Hasegawa K, Wakino S, Yoshioka K, Tatematsu S, Hara Y, Minakuchi H, Washida N, Tokuyama H, Hayashi K, Itoh H (2008) Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem Biophys Res Commun 372:51–56

    CAS  PubMed  Google Scholar 

  86. Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S, Shimamoto K, Horio Y (2010) Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 285:8375–8382

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isono M, Isshiki K, Uzu T, Kashiwagi A, Koya D (2006) Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation. Free Radic Biol Med 40:2175–2182

    CAS  PubMed  Google Scholar 

  88. Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against α-synuclein aggregation by activating molecular chaperones. J Neurosci 32(1):124–132

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson's disease. Biochem Biophys Res Commun 422(4):693–696

    CAS  PubMed  Google Scholar 

  90. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2(52):52ra73

    PubMed Central  PubMed  Google Scholar 

  91. Clark J, Silvaggi JM, Kiselak T, Zheng K, Clore EL, Dai Y, Bass CE, Simon DK (2012) Pgc-1α overexpression downregulates Pitx3 and increases susceptibility to MPTP toxicity associated with decreased Bdnf. PLoS One 7(11):e48925

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Mudò G, Mäkelä J, Di Liberto V, Tselykh TV, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre JA, Korhonen L, Belluardo N, Lindholm D (2012) Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell Mol Life Sci 69(7):1153–1165

    PubMed  Google Scholar 

  93. Clark J, Reddy S, Zheng K, Betensky RA, Simon DK (2011) Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease. BMC Med Genet 12:69

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144(5):689–702

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Pacelli C, De Rasmo D, Signorile A, Grattagliano I, di Tullio G, D'Orazio A, Nico B, Comi GP, Ronchi D, Ferranini E, Pirolo D, Seibel P, Schubert S, Gaballo A, Villani G, Cocco T (2011) Mitochondrial defect and PGC-1α dysfunction in parkin-associated familial Parkinson's disease. Biochim Biophys Acta 1812(8):1041–1053

    CAS  PubMed  Google Scholar 

  96. Braidy N, Guillemin GJ, Grant R (2011) Effects of kynurenine pathway inhibition on NAD metabolism and cell viability in human primary astrocytes and neurons. Int J Tryptophan Res 4:29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Suh HS, Zhao ML, Rivieccio M, Choi S, Connolly E, Zhao Y, Takikawa O, Brosnan CF, Lee SC (2007) Astrocyte indoleamine 2,3-dioxygenase is induced by the TLR3 ligand poly(I:C): mechanism of induction and role in antiviral response. J Virol 81(18):9838–9850

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Weir HJ, Murray TK, Kehoe PG, Love S, Verdin EM, O'Neill MJ, Lane JD, Balthasar N (2012) CNS SIRT3 expression is altered by reactive oxygen species and in Alzheimer's disease. PLoS One 7(11):e48225

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Weller C, Oxlade N, Dobbs SM, Dobbs RJ, Charlett A, Bjarnason IT (2005) Role of inflammation in gastrointestinal tract in aetiology and pathogenesis of idiopathic parkinsonism. FEMS Immunol Med Microbiol 44(2):129–135

    CAS  PubMed  Google Scholar 

  100. Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18(5):595–606

    CAS  PubMed  Google Scholar 

  101. Glorioso C, Oh S, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis 41(2):279–290

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Venkateshappa C, Harish G, Mythri RB, Mahadevan A, Bharath MM, Shankar SK (2012) Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: implications for Parkinson's disease. Neurochem Res 37(2):358–369

    CAS  PubMed  Google Scholar 

  103. Watfa G, Dragonas C, Brosche T, Dittrich R, Sieber CC, Alecu C, Benetos A, Nzietchueng R (2011) Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J Nutr Health Aging 15(4):277–281

    CAS  PubMed  Google Scholar 

  104. Maeda T, Guan JZ, Koyanagi M, Higuchi Y, Makino N (2012) Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease. J Neurogenet 26(2):245–251

    CAS  PubMed  Google Scholar 

  105. Hudson G, Faini D, Stutt A, Eccles M, Robinson L, Burn DJ, Chinnery PF (2011) No evidence of substantia nigra telomere shortening in Parkinson's disease. Neurobiol Aging 32(11):2107.e3–5

    Google Scholar 

  106. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M, Wong KK (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 60(5):432–435

    CAS  PubMed  Google Scholar 

  107. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287(39):32307–32311

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Hasegawa T, Baba T, Kobayashi M, Konno M, Sugeno N, Kikuchi A, Itoyama Y, Takeda A (2010) Role of TPPP/p25 on α-synuclein-mediated oligodendroglial degeneration and the protective effect of SIRT2 inhibition in a cellular model of multiple system atrophy. Neurochem Int 57(8):857–866

    CAS  PubMed  Google Scholar 

  109. Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, Chopra V, Hersch SM, Kazantsev AG (2011) The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS. Hum Mol Genet 20(20):3986–3996

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Leonard S, Luthman D, Logel J, Luthman J, Antle C, Freedman R, Hoffer B (1993) Acidic and basic fibroblast growth factor mRNAs are increased in striatum following MPTP-induced dopamine neurofiber lesion: assay by quantitative PCR. Brain Res Mol Brain Res 18(4):275–284

    CAS  PubMed  Google Scholar 

  111. Brough D, Pelegrin P, Rothwell NJ (2009) Pannexin-1-dependent caspase-1 activation and secretion of IL-1b is regulated by zinc. Eur J Immunol 39:352–358

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Ito J-I, Nagayasu Y, Lu R, Kheirollah A, Hayashi M, Yokoyama S (2005) Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J Lipid Res 46:679–686

    CAS  PubMed  Google Scholar 

  114. Kacer D, McIntire C, Kirov A, Kany E, Roth J, Liaw L, Small D, Friesel R, Basilico C, Tarantini F, Verdi J, Prudovsky I (2011) Regulation of non-classical FGF1 release and FGF-dependent cell transformation by CBF1-mediated notch signaling. J Cell Physiol 226(11):3064–3075

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Dai YB, Tan XJ, Wu WF, Warner M, Gustafsson JÅ (2012) Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 109(32):13112–13117

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Cheng X, Wang Z, Yang J, Ma M, Lu T, Xu G, Liu X (2011) Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res 33(7):675–680

    CAS  PubMed  Google Scholar 

  117. Harada J, Foley M, Moskowitz MA, Waeber C (2004) Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J Neurochem 88(4):1026–1039

    CAS  PubMed  Google Scholar 

  118. Bassi R, Anelli V, Giussani P, Tettamanti G, Viani P, Riboni L (2006) Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia 53(6):621–630

    PubMed  Google Scholar 

  119. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LA, Hovatta O, Gustafsson JA, Arenas E (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5(4):409–419

    CAS  PubMed  Google Scholar 

  120. Di Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S, Mirone P, Masotti G, Moroni F, Tarantini F (2005) Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol 25(6):981–993

    PubMed  Google Scholar 

  121. Domenger D, Dea D, Theroux L, Moquin L, Gratton A, Poirier J (2012) The MPTP neurotoxic lesion model of Parkinson's disease activates the apolipoprotein E cascade in the mouse brain. Exp Neurol 233(1):513–522

    CAS  PubMed  Google Scholar 

  122. Xia J, Lim JC, Lu W, Beckel JM, Macarak EJ, Laties AM, Mitchell CH (2012) Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7 receptors. J Physiol 590(Pt 10):2285–2304

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC, Bennett MVL, Abudara V (2010) FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. PNAS 107(52):22659–22664

    PubMed Central  PubMed  Google Scholar 

  124. Xu X, Li D, He Q, Gao J, Chen B, Xie A (2011) Interleukin-18 promoter polymorphisms and risk of Parkinson's disease in a Han Chinese population. Brain Res 1381:90–94

    CAS  PubMed  Google Scholar 

  125. Pascale E, Passarelli E, Purcaro C, Vestri AR, Fakeri A, Guglielmi R, Passarelli F, Meco G (2011) Lack of association between IL-1β, TNF-α, and IL-10 gene polymorphisms and sporadic Parkinson's disease in an Italian cohort. Acta Neurol Scand 124(3):176–181

    CAS  PubMed  Google Scholar 

  126. Prossin AR, Koch AE, Campbell PL, McInnis MG, Zalcman SS, Zubieta JK (2011) Association of plasma interleukin-18 levels with emotion regulation and μ-opioid neurotransmitter function in major depression and healthy volunteers. Biol Psychiatry 69(8):808–812

    CAS  PubMed  Google Scholar 

  127. Lee M, Kang Y, Suk K, Schwab C, Yu S, McGeer PL (2011) Acidic fibroblast growth factor (FGF) potentiates glial-mediated neurotoxicity by activating FGFR2 IIIb protein. J Biol Chem 286(48):41230–41245

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Adeosun SO, Hou X, Jiao Y, Zheng B, Henry S, Hill R, He Z, Pani A, Kyle P, Ou X, Mosley T, Farley JM, Stockmeier C, Paul I, Bigler S, Brinton RD, Smeyne R, Wang JM (2012) Allopregnanolone reinstates tyrosine hydroxylase immunoreactive neurons and motor performance in an MPTP-lesioned mouse model of Parkinson's disease. PLoS One 7(11):e50040

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Muxel SM, Pires-Lapa MA, Monteiro AWA, Cecon E, Tamura EK, Floeter-Winter LM, Markus RP (2012) NF-kB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS ONE 7(12):e52010

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Fernandes PA, Cecon E, Markus RP, Ferreira ZS (2006) Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a ‘feedback’ of the immune response on circadian timing. J Pineal Res 41:344–350

    CAS  PubMed  Google Scholar 

  131. Liu YJ, Zhuang J, Zhu HY, Shen YX, Tan ZL, Zhou JN (2007) Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. J Pineal Res 43(3):232–238

    CAS  PubMed  Google Scholar 

  132. Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP (2007) Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppress nocturnal melatonin production. J Pineal Res 43:365–371

    CAS  PubMed  Google Scholar 

  133. Liu YJ, Meng FT, Wang LL, Zhang LF, Cheng XP, Zhou JN (2012) Apolipoprotein E influences melatonin biosynthesis by regulating NAT and MAOA expression in C6 cells. J Pineal Res 52(4):397–402

    CAS  PubMed  Google Scholar 

  134. Jang SW, Liu X, Pradoldeja S, Tosini G, Chang Q, Iuvone PM, Ye K (2010) N-acetylserotonin activates TrkB receptor in a circadian rhythm. Proc Natl Acad Sci 107(8):3876–3881

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Castagnoli K, Petzer JB, Steyn SJ, van der Schyf CJ, Castagnoli N Jr (2003) Inhibition of human MAO-A and MAO-B by a compound isolated from flue-cured tobacco leaves and its neuroprotective properties in the MPTP mouse model of neurodegeneration. Inflammopharmacology 11:183–188

    CAS  PubMed  Google Scholar 

  136. Hoglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735

    PubMed  Google Scholar 

  137. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Desplats P, Spencer B, Crews L, Pathel P, Morvinski-Friedmann D, Kosberg K, Roberts S, Patrick C, Winner B, Winkler J, Masliah E (2012) α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem 287(38):31691–31702

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Winner B, Rockenstein E, Lie DC, Aigner R, Mante M, Bogdahn U, Couillard-Despres S, Masliah E, Winkler J (2008) Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis. Neurobiol Aging 29(6):913–925

    CAS  PubMed Central  PubMed  Google Scholar 

  140. May VE, Nuber S, Marxreiter F, Riess O, Winner B, Winkler J (2012) Impaired olfactory bulb neurogenesis depends on the presence of human wild-type alpha-synuclein. Neuroscience 222:343–355

    CAS  PubMed  Google Scholar 

  141. Enciu AM, Nicolescu MI, Manole CG, Muresanu DF, Popescu LM, Popescu BO (2011) Neuroregeneration in neurodegenerative disorders. BMC Neurol 11:75

    PubMed Central  PubMed  Google Scholar 

  142. Marxreiter F, Regensburger M, Winkler J (2013) Adult neurogenesis in Parkinson's disease. Cell Mol Life Sci 70(3):459–473

    CAS  PubMed  Google Scholar 

  143. Kanai M, Funakoshi H, Takahashi H, Hayakawa T, Mizuno S, Matsumoto K, Nakamura T (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol Brain 2:8

    PubMed Central  PubMed  Google Scholar 

  144. Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, Silver R (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36(3):2347–2359

    PubMed Central  PubMed  Google Scholar 

  145. Tiberi L, van den Ameele J, Dimidschstein J, Piccirilli J, Gall D, Herpoel A, Bilheu A, Bonnefont J, Iacovino M, Kyba M, Bouschet T, Vanderhaeghen P (2012) BCL6 controls neurogenesis through Sirt1-dependent epigenetic repression of selective Notch targets. Nat Neurosci 15(12):1627–1635

    CAS  PubMed  Google Scholar 

  146. Libert S, Cohen D, Guarente L (2008) Neurogenesis directed by Sirt1. Nat Cell Biol 10(4):373–374

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Luo CX, Jin X, Cao CC, Zhu MM, Wang B, Chang L, Zhou QG, Wu HY, Zhu DY (2010) Bidirectional regulation of neurogenesis by neuronal nitric oxide synthase derived from neurons and neural stem cells. Stem Cells 28(11):2041–2052

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, G., Maes, M. Neurodegeneration in Parkinson's Disease: Interactions of Oxidative Stress, Tryptophan Catabolites and Depression with Mitochondria and Sirtuins. Mol Neurobiol 49, 771–783 (2014). https://doi.org/10.1007/s12035-013-8554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8554-z

Keywords

Navigation