Skip to main content

Advertisement

Log in

LXR Agonists: New Potential Therapeutic Drug for Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Liver X receptors (LXRs) are nuclear receptors involved in the regulation of lipid metabolism and inflammatory responses in the central nervous system. Defects in cholesterol homeostasis contribute to the pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and Huntington’s disease. Inflammatory responses could enhance the neurodegenerative process or act independently. The natural and synthetic LXR agonists induce the transcriptional activity of LXR target genes, thus attenuate the imbalance of cholesterol metabolism and overactivation of microglia and astrocytes in inflammation and are widely used in a variety of neurodegenerative diseases animal models. By developing more specific, potent, penetrable, and functional LXR agonist may lead to a better curative effect for neurodegenerative diseases and avoidance of potentially deleterious side effects. Here, we focus on recent advances in our understanding of the role of LXRs and their agonists in cholesterol homeostasis, inflammation, and the potential therapeutic effects in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

24OHC:

24(S)-Hydroxycholesterol

22OHC:

22(R)-Hydroxycholesterol

24,25OHC:

24(S),25-Epoxycholesterol

27OHC:

27-Hydroxycholesterol

3βHSD:

3b-Hydroxysteroid dehydrogenase

ABC:

ATP-binding cassette

ACC:

Acetyl CoA carboxylase

ApoE:

Apolipoprotein E

ChREBP:

Carbohydrate responsive element binding protein

COX-2:

Cyclooxygenase-2

CYP11A1:

Cytochrome P450 side-chain cleavage

ENG:

Endoglin/CD105

FAS:

Fatty acid synthase

F1–6B:

Fructose 1,6 biphosphatase

Glut4:

Glucose transporter 4

G6P:

Glucose-6-phosphatase

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

LXRE:

LXR response element

PEPK:

Phosphoenolpyruvate kinase

SCD1:

Stearoyl-CoA desaturase 1

SREBP1c:

Sterol regulatory element binding protein 1c

StAR:

Steroidogenic acute regulatory protein.

References

  1. Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 24:806–815

    PubMed  Google Scholar 

  2. Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397

    CAS  PubMed  Google Scholar 

  3. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A, Pfrieger FW (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–1357

    CAS  PubMed  Google Scholar 

  4. Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 16:193–212

    CAS  PubMed  Google Scholar 

  5. Shepardson NE, Shankar GM, Selkoe DJ (2011) Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 68:1239–1244

    PubMed Central  PubMed  Google Scholar 

  6. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 96:7238–7243

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Cao G, Bales KR, DeMattos RB, Paul SM (2007) Liver X receptor-mediated gene regulation and cholesterol homeostasis in brain: relevance to Alzheimer’s disease therapeutics. Curr Alzheimer Res 4:179–184

    CAS  PubMed  Google Scholar 

  8. Dietschy JM, Turley SD (2001) Cholesterol metabolism in the brain. Curr Opin Lipidol 12:105–112

    CAS  PubMed  Google Scholar 

  9. Michikawa M, Fan QW, Isobe I, Yanagisawa K (2000) Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J Neurochem 74:1008–1016

    CAS  PubMed  Google Scholar 

  10. Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M (1994) A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 14:7025–7035

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Pannu PS, Allahverdian S, Francis GA (2012) Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocr 368:99–107

    Google Scholar 

  12. Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. J Endocrinol 204:233–240

    CAS  PubMed  Google Scholar 

  13. Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG, Dietschy JM (2007) Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27:14470–14480

    CAS  PubMed  Google Scholar 

  14. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383:728–731

    CAS  PubMed  Google Scholar 

  15. Collins JL, Fivush AM, Watson MA, Galardi CM, Lewis MC, Moore LB, Parks DJ, Wilson JG, Tippin TK, Binz JG, Plunket KD, Morgan DG, Beaudet EJ, Whitney KD, Kliewer SA, Willson TM (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966

    CAS  PubMed  Google Scholar 

  16. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 96(1):266–271

    Google Scholar 

  17. Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, May S, Chan J, Fan J, Collins J, Wellington CL (2010) ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem 285:34144–34154

    CAS  PubMed  Google Scholar 

  18. Fitz NF, Cronican A, Pham T, Fogg A, Fauq AH, Chapman R, Lefterov I, Koldamova R (2010) Liver X receptor agonist treatment ameliorates amyloid pathology and memory deficits caused by high-fat diet in APP23 mice. J Neurosci 30:6862–6872

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Repa J, Turley S, Lobaccaro J, Medina J, Li L, Lustig K, Shan B, Heyman R, Dietschy J, Mangelsdorf D (2000) Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Sci Signal 289:1524

    CAS  Google Scholar 

  20. Houck KA, Borchert KM, Hepler CD, Thomas JS, Bramlett KS, Michael LF, Burris TP (2004) T0901317 is a dual LXR/FXR agonist. Mol Genet Metab 83:184–187

    CAS  PubMed  Google Scholar 

  21. Shenoy SD, Spencer TA, Mercer-Haines NA, Alipour M, Gargano MD, Runge-Morris M, Kocarek TA (2004) CYP3A induction by liver x receptor ligands in primary cultured rat and mouse hepatocytes is mediated by the pregnane X receptor. Drug Metab Dispos 32:66–71

    CAS  PubMed  Google Scholar 

  22. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B (2000) Role of LXRs in control of lipogenesis. Genes Dev 14:2831–2838

    CAS  PubMed  Google Scholar 

  23. Viennois E, Pommier AJ, Mouzat K, Oumeddour A, El Hajjaji FZ, Dufour J, Caira F, Volle DH, Baron S, Lobaccaro JM (2011) Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets 15:219–232

    CAS  PubMed  Google Scholar 

  24. Steffensen KR, Neo SY, Stulnig TM, Vega VB, Rahman SS, Schuster GU, Gustafsson J-Å, Liu ET (2004) Genome-wide expression profiling; a panel of mouse tissues discloses novel biological functions of liver X receptors in adrenals. J Mol Endocrinol 33:609–622

    CAS  PubMed  Google Scholar 

  25. Annicotte JS, Schoonjans K, Auwerx J (2004) Expression of the liver X receptor α and β in embryonic and adult mice. Anat Rec Part A Discov Mol Cell Evol Biol 277:312–316

    Google Scholar 

  26. Wang L, Schuster GU, Hultenby K, Zhang Q, Andersson S, Gustafsson JA (2002) Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc Natl Acad Sci U S A 99:13878–13883

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Andersson S, Gustafsson N, Warner M, Gustafsson JA (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci U S A 102:3857–3862

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bigini P, Steffensen KR, Ferrario A, Diomede L, Ferrara G, Barbera S, Salzano S, Fumagalli E, Ghezzi P, Mennini T (2010) Neuropathologic and biochemical changes during disease progression in liver X receptor [beta]−/− mice, a model of adult neuron disease. J Neuropathol Exp Neurol 69:593

    CAS  PubMed  Google Scholar 

  29. Kim HJ, Fan X, Gabbi C, Yakimchuk K, Parini P, Warner M, Gustafsson JA (2008) Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis–Parkinson’s dementia. Proc Natl Acad Sci U S A 105:2094–2099

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Sacchetti P, Sousa KM, Hall AC, Liste I, Steffensen KR, Theofilopoulos S, Parish CL, Hazenberg C, Richter LÄ, Hovatta O (2009) Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5:409–419

    CAS  PubMed  Google Scholar 

  31. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc Natl Acad Sci U S A 104:10601–10606

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, Sheng H, Xi B, Zhang JZ, Zang YQ (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 121:658–670

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Futter M, Diekmann H, Schoenmakers E, Sadiq O, Chatterjee K, Rubinsztein DC (2009) Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors. J Med Genet 46:438–446

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Edwards PA, Kennedy MA, Mak PA (2002) LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul Pharmacol 38:249–256

    CAS  PubMed  Google Scholar 

  35. Whitney KD, Watson MA, Collins JL, Benson WG, Stone TM, Numerick MJ, Tippin TK, Wilson JG, Winegar DA, Kliewer SA (2002) Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 16:1378–1385

    CAS  PubMed  Google Scholar 

  36. Liang Y, Lin S, Beyer TP, Zhang Y, Wu X, Bales KR, DeMattos RB, May PC, Li SD, Jiang XC, Eacho PI, Cao G, Paul SM (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 88:623–634

    CAS  PubMed  Google Scholar 

  37. Dai XY, Ou X, Hao XR, Cao DL, Tang YL, Hu YW, Li XX, Tang CK (2008) The effect of T0901317 on ATP-binding cassette transporter A1 and Niemann–Pick type C1 in apoE−/− mice. J Cardiovasc Pharmacol 51:467–475

    CAS  PubMed  Google Scholar 

  38. Cronican AA, Fitz NF, Pham T, Fogg A, Kifer B, Koldamova R, Lefterov I (2010) Proton pump inhibitor lansoprazole is a nuclear liver X receptor agonist. Biochem Pharmacol 79:1310–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K, Lobaccaro JM, Ghandour MS, Raymondjean M, Schumacher M, Massaad C (2009) 25-hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 109:945–958

    CAS  PubMed  Google Scholar 

  40. Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, Hendriks JJ (2012) Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 90:60–71

    CAS  PubMed  Google Scholar 

  41. Castrillo A, Tontonoz P (2004) Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. Annu Rev Cell Dev Biol 20:455–480

    CAS  PubMed  Google Scholar 

  42. Rigamonti E, Chinetti-Gbaguidi G, Staels B (2008) Regulation of macrophage functions by PPAR-alpha, PPAR-gamma, and LXRs in mice and men. Arterioscler Thromb Vasc Biol 28:1050–1059

    CAS  PubMed  Google Scholar 

  43. Wang YY, Dahle MK, Steffensen KR, Reinholt FP, Collins JL, Thiemermann C, Aasen AO, Gustafsson JA, Wang JE (2009) Liver X receptor agonist GW3965 dose-dependently regulates lps-mediated liver injury and modulates posttranscriptional TNF-alpha production and p38 mitogen-activated protein kinase activation in liver macrophages. Shock 32:548–553

    PubMed  Google Scholar 

  44. Liu Y, de Qiu K, Ma X (2012) Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis 13:69–74

    CAS  PubMed  Google Scholar 

  45. Hindinger C, Hinton DR, Kirwin SJ, Atkinson RD, Burnett ME, Bergmann CC, Stohlman SA (2006) Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res 84:1225–1234

    CAS  PubMed  Google Scholar 

  46. Szanto A, Nagy L (2008) The many faces of PPARgamma: anti-inflammatory by any means? Immunobiology 213:789–803

    CAS  PubMed  Google Scholar 

  47. Paterniti I, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S (2010) Liver X receptor agonist treatment regulates inflammatory response after spinal cord trauma. J Neurochem 112:611–624

    CAS  PubMed  Google Scholar 

  48. Morales JR, Ballesteros I, Deniz JM, Hurtado O, Vivancos J, Nombela F, Lizasoain I, Castrillo A, Moro MA (2008) Activation of liver X receptors promotes neuroprotection and reduces brain inflammation in experimental stroke. Circulation 118:1450–1459

    CAS  PubMed  Google Scholar 

  49. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    CAS  PubMed  Google Scholar 

  50. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    PubMed  Google Scholar 

  51. Gasque P, Singhrao SK, Neal JW, Gotze O, Morgan BP (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol 150:31–41

    CAS  PubMed  Google Scholar 

  52. McLean JR, Sanelli TR, Leystra-Lantz C, He BP, Strong MJ (2005) Temporal profiles of neuronal degeneration, glial proliferation, and cell death in hNFL(+/+) and NFL(−/−) mice. Glia 52:59–69

    PubMed  Google Scholar 

  53. Zhang-Gandhi CX, Drew PD (2007) Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol 183:50–59

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Howard BM, Zhicheng M, Filipovic R, Moore AR, Antic SD, Zecevic N (2008) Radial glia cells in the developing human brain. Neuroscientist 14:459–473

    PubMed Central  PubMed  Google Scholar 

  55. Kalderon N, Ahonen K, Fedoroff S (1990) Developmental transition in plasticity properties of differentiating astrocytes: age-related biochemical profile of plasminogen activators in astroglial cultures. Glia 3:413–426

    CAS  PubMed  Google Scholar 

  56. Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105:13445–13450

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Xing Y, Fan X, Ying D (2010) Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 115:1486–1494

    CAS  PubMed  Google Scholar 

  58. Lee JH, Park EJ, Kim OS, Kim HY, Joe EH, Jou I (2005) Double-stranded RNA-activated protein kinase is required for the LPS-induced activation of STAT1 inflammatory signaling in rat brain glial cells. Glia 50:66–79

    PubMed  Google Scholar 

  59. Lee JH, Park SM, Kim OS, Lee CS, Woo JH, Park SJ, Joe EH, Jou I (2009) Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol Cell 35:806–817

    CAS  PubMed  Google Scholar 

  60. Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su J-L, Sundseth SS, Winegar DA, Blanchard DE, Spencer TA (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272:3137–3140

    CAS  PubMed  Google Scholar 

  61. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL (2007) Ligand activation of LXRbeta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRalpha and apoE. J Clin Invest 117:2337

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Joseph SB, Laffitte BA, Patel PH, Watson MA, Matsukuma KE, Walczak R, Collins JL, Osborne TF, Tontonoz P (2002) Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 277:11019–11025

    CAS  PubMed  Google Scholar 

  63. Mitro N, Vargas L, Romeo R, Koder A, Saez E (2007) T0901317 is a potent PXR ligand: implications for the biology ascribed to LXR. FEBS Lett 581:1721–1726

    CAS  PubMed  Google Scholar 

  64. Kaneko E, Matsuda M, Yamada Y, Tachibana Y, Shimomura I, Makishima M (2003) Induction of intestinal ATP-binding cassette transporters by a phytosterol-derived liver X receptor agonist. J Biol Chem 278:36091–36098

    CAS  PubMed  Google Scholar 

  65. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    CAS  PubMed  Google Scholar 

  66. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  67. Bjorkbacka H, Kunjathoor VV, Moore KJ, Koehn S, Ordija CM, Lee MA, Means T, Halmen K, Luster AD, Golenbock DT, Freeman MW (2004) Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med 10:416–421

    PubMed  Google Scholar 

  68. Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, Pocklington A, Abraham R, Hollingworth P, Sims R, Gerrish A, Pahwa JS, Jones N, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Peters O, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Ruther E, Carrasquillo MM, Pankratz VS, Younkin SG, Hardy J, O’Donovan MC, Owen MJ, Williams J (2010) Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer’s disease. PLoS One 5:e13950

    PubMed Central  PubMed  Google Scholar 

  69. Lane RM, Farlow MR (2005) Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J Lipid Res 46:949–968

    CAS  PubMed  Google Scholar 

  70. Aronson MK, Ooi WL, Morgenstern H, Hafner A, Masur D, Crystal H, Frishman WH, Fisher D, Katzman R (1990) Women, myocardial infarction, and dementia in the very old. Neurology 40:1102–1106

    CAS  PubMed  Google Scholar 

  71. Breteler MM, Claus JJ, Grobbee DE, Hofman A (1994) Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam study. BMJ 308:1604–1608

    CAS  PubMed  Google Scholar 

  72. Prince M, Cullen M, Mann A (1994) Risk factors for Alzheimer’s disease and dementia: a case–control study based on the MRC elderly hypertension trial. Neurology 44:97–104

    CAS  PubMed  Google Scholar 

  73. Wilson PW, Myers RH, Larson MG, Ordovas JM, Wolf PA, Schaefer EJ (1994) Apolipoprotein E alleles, dyslipidemia, and coronary heart disease. The Framingham Offspring Study. JAMA 272:1666–1671

    CAS  PubMed  Google Scholar 

  74. Desmond DW, Tatemichi TK, Paik M, Stern Y (1993) Risk factors for cerebrovascular disease as correlates of cognitive function in a stroke-free cohort. Arch Neurol 50:162–166

    CAS  PubMed  Google Scholar 

  75. Grant WB (1999) Dietary links to Alzheimer’s disease: 1999 update. J Alzheimers Dis 1:197–201

    CAS  PubMed  Google Scholar 

  76. Jarvik GP, Wijsman EM, Kukull WA, Schellenberg GD, Yu C, Larson EB (1995) Interactions of apolipoprotein E genotype, total cholesterol level, age, and sex in prediction of Alzheimer’s disease: a case–control study. Neurology 45:1092–1096

    CAS  PubMed  Google Scholar 

  77. Sparks DL (1997) Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer’s disease? Ann N Y Acad Sci 826:128–146

    CAS  PubMed  Google Scholar 

  78. Czech C, Forstl H, Hentschel F, Monning U, Besthorn C, Geiger-Kabisch C, Sattel H, Masters C, Beyreuther K (1994) Apolipoprotein E-4 gene dose in clinically diagnosed Alzheimer’s disease: prevalence, plasma cholesterol levels and cerebrovascular change. Eur Arch Psychiatry Clin Neurosci 243:291–292

    CAS  PubMed  Google Scholar 

  79. Sparks DL, Hunsaker JC 3rd, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR (1990) Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging 11:601–607

    CAS  PubMed  Google Scholar 

  80. Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94

    CAS  PubMed  Google Scholar 

  81. Sparks DL, Martins R, Martin T (2002) Cholesterol and cognition: rationale for the AD cholesterol-lowering treatment trial and sex-related differences in beta-amyloid accumulation in the brains of spontaneously hypercholesterolemic Watanabe rabbits. Ann N Y Acad Sci 977:356–366

    CAS  PubMed  Google Scholar 

  82. Roses AD, Saunders AM (1994) < i > APOE</i > is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 5:663–667

    CAS  PubMed  Google Scholar 

  83. Cramer PE, Cirrito JR, Wesson DW, Lee C, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ (2012) ApoE-directed therapeutics rapidly clear {beta}-amyloid and reverse deficits in AD mouse models. Science Signalling 335:1503

    CAS  Google Scholar 

  84. Gregg RE, Zech LA, Schaefer EJ, Stark D, Wilson D, Brewer HB Jr (1986) Abnormal in vivo metabolism of apolipoprotein E4 in humans. J Clin Invest 78:815–821

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X, Fryer JD, Kowalewski T, Holtzman DM (2004) ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J Biol Chem 279:40987–40993

    CAS  PubMed  Google Scholar 

  86. Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, Holtzman DM (2005) Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280:43236–43242

    CAS  PubMed  Google Scholar 

  87. Wahrle SE, Jiang H, Parsadanian M, Kim J, Li A, Knoten A, Jain S, Hirsch-Reinshagen V, Wellington CL, Bales KR, Paul SM, Holtzman DM (2008) Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 118:671–682

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Garcia AN, Muniz MT, Souza e Silva HR, da Silva HA, Athayde-Junior L (2009) Cyp46 polymorphisms in Alzheimer’s disease: a review. J Mol Neurosci 39:342–345

    CAS  PubMed  Google Scholar 

  89. Adighibe O, Arepalli S, Duckworth J, Hardy J, Wavrant-De Vrieze F (2006) Genetic variability at the LXR gene (NR1H2) may contribute to the risk of Alzheimer’s disease. Neurobiol Aging 27:1431–1434

    CAS  PubMed  Google Scholar 

  90. Kang J, Rivest S (2012) Lipid metabolism and neuroinflammation in Alzheimer’s disease: a role for liver X receptors. Endocr Rev 33:715–746

    Google Scholar 

  91. Sun Y, Yao J, Kim TW, Tall AR (2003) Expression of liver X receptor target genes decreases cellular amyloid beta peptide secretion. J Biol Chem 278:27688–27694

    CAS  PubMed  Google Scholar 

  92. Koldamova RP, Lefterov IM, Staufenbiel M, Wolfe D, Huang S, Glorioso JC, Walter M, Roth MG, Lazo JS (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer’s disease. J Biol Chem 280:4079–4088

    CAS  PubMed  Google Scholar 

  93. Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, Ring RH, Kirksey Y, Aschmies S, Xu J, Kubek K, Hirst WD, Gonzales C, Chen Y, Murphy E, Leonard S, Vasylyev D, Oganesian A, Martone RL, Pangalos MN, Reinhart PH, Jacobsen JS (2007) The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 34:621–628

    CAS  PubMed  Google Scholar 

  94. Terwel D, Steffensen KR, Verghese PB, Kummer MP, Gustafsson JA, Holtzman DM, Heneka MT (2011) Critical role of astroglial apolipoprotein E and liver X receptor-alpha expression for microglial Abeta phagocytosis. J Neurosci 31:7049–7059

    CAS  PubMed  Google Scholar 

  95. Kim WS, Chan SL, Hill AF, Guillemin GJ, Garner B (2009) Impact of 27-hydroxycholesterol on amyloid-beta peptide production and ATP-binding cassette transporter expression in primary human neurons. J Alzheimers Dis 16:121–131

    CAS  PubMed  Google Scholar 

  96. Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Vark-van der Zee LC, Kuipers F, Kiliaan A, Blokland A, Sijbrands EJ, Steinbusch H, Prickaerts J, Lutjohann D, Mulder M (2011) Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 32:1262–1272

    CAS  PubMed  Google Scholar 

  97. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    CAS  PubMed  Google Scholar 

  98. Schwab C, McGeer PL (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimers Dis 13:359–369

    CAS  PubMed  Google Scholar 

  99. Lefterov I, Bookout A, Wang Z, Staufenbiel M, Mangelsdorf D, Koldamova R (2007) Expression profiling in APP23 mouse brain: inhibition of Abeta amyloidosis and inflammation in response to LXR agonist treatment. Mol Neurodegener 2:20

    PubMed Central  PubMed  Google Scholar 

  100. Cui W, Sun Y, Wang Z, Xu C, Peng Y, Li R (2012) Liver X receptor activation attenuates inflammatory response and protects cholinergic neurons in APP/PS1 transgenic mice. Neuroscience 210:200–210

    CAS  PubMed  Google Scholar 

  101. Chang L, Zhang Z, Li W, Dai J, Guan Y, Wang X (2007) Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS-NF-kappaB pathway. Biochem Biophys Res Commun 357:772–778

    CAS  PubMed  Google Scholar 

  102. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2011) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15:77–90

    Google Scholar 

  103. Ding BJ, Ma WW, He LL, Zhou X, Yuan LH, Yu HL, Feng JF, Xiao R (2011) Soybean isoflavone alleviates beta-amyloid 1–42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-kappaB activity in rats. Int J Dev Neurosci 29:537–542

    CAS  PubMed  Google Scholar 

  104. Xiang Z, Ho L, Yemul S, Zhao Z, Qing W, Pompl P, Kelley K, Dang A, Teplow D, Pasinetti GM (2002) Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer’s disease neuropathology. Gene Expr 10:271–278

    CAS  PubMed  Google Scholar 

  105. Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T (2005) Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 166:1475–1485

    CAS  PubMed  Google Scholar 

  106. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim DJ, Terwedow H, Pericak-Vance MA, Rimmler JB, Haynes CS, Roses AD, Lee A, Shaner B, Menold M, Seboun E, Fitoussi RP, Gartioux C, Reyes C, Ribierre F, Gyapay G, Weissenbach J, Hauser SL, Goodkin DE, Lincoln R, Usuku K, Oksenberg JR et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 13:469–471

    CAS  PubMed  Google Scholar 

  107. Olsson T (1995) Critical influences of the cytokine orchestration on the outcome of myelin antigen-specific T-cell autoimmunity in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev 144:245–268

    CAS  PubMed  Google Scholar 

  108. Hickey WF (1999) The pathology of multiple sclerosis: a historical perspective. J Neuroimmunol 98:37–44

    CAS  PubMed  Google Scholar 

  109. Miller G (2005) Neuroscience. The dark side of glia. Science 308:778–781

    CAS  PubMed  Google Scholar 

  110. Teunissen CE, Dijkstra CD, Polman CH, Hoogervorst EL, von Bergmann K, Lutjohann D (2003) Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett 347:159–162

    CAS  PubMed  Google Scholar 

  111. Leoni V, Caccia C (2011) Oxysterols as biomarkers in neurodegenerative diseases. Chem Phys Lipids 164:515–524

    CAS  PubMed  Google Scholar 

  112. Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, Hillert J, Bjorkhem I (2004) Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med 42:186–191

    CAS  PubMed  Google Scholar 

  113. Makoukji J, Shackleford G, Meffre D, Grenier J, Liere P, Lobaccaro JM, Schumacher M, Massaad C (2011) Interplay between LXR and Wnt/beta-catenin signaling in the negative regulation of peripheral myelin genes by oxysterols. J Neurosci 31:9620–9629

    CAS  PubMed  Google Scholar 

  114. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132

    CAS  PubMed  Google Scholar 

  115. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189

    CAS  PubMed  Google Scholar 

  117. Heller JJ, Qiu J, Zhou L (2011) Nuclear receptors take center stage in Th17 cell-mediated autoimmunity. J Clin Invest 121:519–521

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Xu J, Wagoner G, Douglas JC, Drew PD (2009) Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol 86:401–409

    CAS  PubMed  Google Scholar 

  119. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    CAS  PubMed  Google Scholar 

  120. van Horssen J, Witte M, Ciccarelli O (2012) The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 18:1058–1067

    PubMed  Google Scholar 

  121. Takahashi H, Wakabayashi K (2001) The cellular pathology of Parkinson’s disease. Neuropathology 21:315–322

    CAS  PubMed  Google Scholar 

  122. de Lau LM, Koudstaal PJ, Hofman A, Breteler MM (2006) Serum cholesterol levels and the risk of Parkinson’s disease. Am J Epidemiol 164:998–1002

    PubMed  Google Scholar 

  123. Hu G, Antikainen R, Jousilahti P, Kivipelto M, Tuomilehto J (2008) Total cholesterol and the risk of Parkinson disease. Neurology 70:1972–1979

    CAS  PubMed  Google Scholar 

  124. Sohmiya M, Tanaka M, Tak NW, Yanagisawa M, Tanino Y, Suzuki Y, Okamoto K, Yamamoto Y (2004) Redox status of plasma coenzyme Q10 indicates elevated systemic oxidative stress in Parkinson’s disease. J Neurol Sci 223:161–166

    CAS  PubMed  Google Scholar 

  125. Rantham Prabhakara JP, Feist G, Thomasson S, Thompson A, Schommer E, Ghribi O (2008) Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on tyrosine hydroxylase and alpha-synuclein in human neuroblastoma SH-SY5Y cells. J Neurochem 107:1722–1729

    PubMed  Google Scholar 

  126. Cheng D, Kim WS, Garner B (2008) Regulation of alpha-synuclein expression by liver X receptor ligands in vitro. Neuroreport 19:1685–1689

    CAS  PubMed  Google Scholar 

  127. Khabazian I, Bains JS, Williams DE, Cheung J, Wilson JM, Pasqualotto BA, Pelech SL, Andersen RJ, Wang YT, Liu L, Nagai A, Kim SU, Craig UK, Shaw CA (2002) Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex. J Neurochem 82:516–528

    CAS  PubMed  Google Scholar 

  128. Miller G (2006) Neurodegenerative disease. Guam’s deadly stalker: on the loose worldwide? Science 313:428–431

    CAS  PubMed  Google Scholar 

  129. L’Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2010) Glia as a turning point in the therapeutic strategy of Parkinson’s disease. CNS Neurol Disord Drug Targets 9:349–372

    PubMed  Google Scholar 

  130. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17

    PubMed  Google Scholar 

  131. Yokoyama H, Uchida H, Kuroiwa H, Kasahara J, Araki T (2011) Role of glial cells in neurotoxin-induced animal models of Parkinson’s disease. Neurol Sci 32:1–7

    CAS  PubMed  Google Scholar 

  132. Ma DK, Ming G-l, Song H (2009) Oxysterols drive dopaminergic neurogenesis from stem cells. Cell Stem Cell 5:343–344

    CAS  PubMed  Google Scholar 

  133. Dai YB, Tan XJ, Wu WF, Warner M, Gustafsson JA (2012) Liver X receptor beta protects dopaminergic neurons in a mouse model of Parkinson disease. Proc Natl Acad Sci U S A 109:13112–13117

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Stone DK, Reynolds AD, Mosley RL, Gendelman HE (2009) Innate and adaptive immunity for the pathobiology of Parkinson’s disease. Antioxid Redox Signal 11:2151–2166

    CAS  PubMed  Google Scholar 

  135. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  136. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90:905–981

    CAS  PubMed  Google Scholar 

  137. Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:55–69

    PubMed Central  PubMed  Google Scholar 

  138. Valenza M, Leoni V, Karasinska JM, Petricca L, Fan J, Carroll J, Pouladi MA, Fossale E, Nguyen HP, Riess O, MacDonald M, Wellington C, DiDonato S, Hayden M, Cattaneo E (2010) Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci 30:10844–10850

    CAS  PubMed  Google Scholar 

  139. Karasinska JM, Hayden MR (2011) Cholesterol metabolism in Huntington disease. Nat Rev Neurol 7:561–572

    CAS  PubMed  Google Scholar 

  140. Borovecki F, Lovrecic L, Zhou J, Jeong H, Then F, Rosas HD, Hersch SM, Hogarth P, Bouzou B, Jensen RV, Krainc D (2005) Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. Proc Natl Acad Sci U S A 102:11023–11028

    CAS  PubMed Central  PubMed  Google Scholar 

  141. del Toro D, Xifro X, Pol A, Humbert S, Saudou F, Canals JM, Alberch J (2010) Altered cholesterol homeostasis contributes to enhanced excitotoxicity in Huntington’s disease. J Neurochem 115:153–167

    PubMed  Google Scholar 

  142. Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I (2010) Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 4:17–23

    PubMed Central  PubMed  Google Scholar 

  143. Sugars KL, Rubinsztein DC (2003) Transcriptional abnormalities in Huntington disease. Trends Genet 19:233–238

    CAS  PubMed  Google Scholar 

  144. Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205:1869–1877

    PubMed Central  PubMed  Google Scholar 

  145. Khoshnan A, Patterson PH (2011) The role of IkappaB kinase complex in the neurobiology of Huntington’s disease. Neurobiol Dis 43:305–311

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (no. 2013CB967002) and National Nature Science Foundation of China (nos. 31070927, 31271051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiwei Xu or Xiaotang Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Li, D., Tang, X. et al. LXR Agonists: New Potential Therapeutic Drug for Neurodegenerative Diseases. Mol Neurobiol 48, 715–728 (2013). https://doi.org/10.1007/s12035-013-8461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8461-3

Keywords

Navigation