Skip to main content

Advertisement

Log in

Recent Advances in α-Synuclein Functions, Advanced Glycation, and Toxicity: Implications for Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The toxicity of α-synuclein in the neuropathology of Parkinson’s disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Izumi Y, Kume T, Akaike A (2011) Regulation of dopaminergic neuronal death by endogenous dopamine and proteasome activity. Yakugaku Zasshi 131(1):21–27

    Article  CAS  PubMed  Google Scholar 

  2. Heisters D (2011) Parkinson’s: symptoms, treatments and research. Br J Nurs 20(9):548–554

    PubMed  Google Scholar 

  3. Shulman JM, De Jager PL, Feany MB (2011) Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 6:193–222. doi:10.1146/annurev-pathol-011110-130242

    Article  CAS  PubMed  Google Scholar 

  4. Hegde ML, Vasudevaraju P, Rao KJ (2010) DNA induced folding/fibrillation of alpha-synuclein: new insights in Parkinson’s disease. Front Biosci 15:418–436

    Article  CAS  PubMed  Google Scholar 

  5. Defebvre L (2010) Parkinson’s disease: role of genetic and environment factors. Involvement in everyday clinical practice. Rev Neurol (Paris) 166(10):764–769. doi:10.1016/j.neurol.2010.07.014

    Article  CAS  Google Scholar 

  6. Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C (2010) Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 31(7):763–780. doi:10.1002/humu.21277

    Article  CAS  PubMed  Google Scholar 

  7. Martin I, Dawson VL, Dawson TM (2010) The impact of genetic research on our understanding of Parkinson’s disease. Prog Brain Res 183:21–41. doi:10.1016/S0079-6123(10)83002-X

    Article  CAS  PubMed  Google Scholar 

  8. Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325. doi:10.1146/annurev-genom-082410-101440

    Article  CAS  PubMed  Google Scholar 

  9. Pagon RA, Bird TD, Dolan CR et al (eds) (1993) GeneReviews™ [Internet]. University of Washington, Seattle, WA. Available from: http://www.ncbi.nlm.nih.gov/books/NBK1116/

  10. Hegde ML, Jagannatha Rao KS (2003) Challenges and complexities of alpha-synuclein toxicity: new postulates in unfolding the mystery associated with Parkinson’s disease. Arch Biochem Biophys 418(2):169–178

    Article  CAS  PubMed  Google Scholar 

  11. Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8(8):2804–2815

    CAS  PubMed  Google Scholar 

  12. Bonini NM, Giasson BI (2005) Snaring the function of alpha-synuclein. Cell 123(3):359–361. doi:10.1016/j.cell.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  13. Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123(3):383–396. doi:10.1016/j.cell.2005.09.028

    Article  CAS  PubMed  Google Scholar 

  14. Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    CAS  PubMed  Google Scholar 

  15. Lykkebo S, Jensen PH (2002) Alpha-synuclein and presynaptic function: implications for Parkinson’s disease. Neuromolecular Med 2(2):115–129. doi:10.1385/NMM:2:2:115

    Article  CAS  PubMed  Google Scholar 

  16. Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252

    Article  CAS  PubMed  Google Scholar 

  17. Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. Faseb J 15(6):916–926

    Article  CAS  PubMed  Google Scholar 

  18. Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL (2002) Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. J Biol Chem 277(8):6344–6352. doi:10.1074/jbc.M108414200

    Article  CAS  PubMed  Google Scholar 

  19. Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of alpha-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273(41):26292–26294

    Article  CAS  PubMed  Google Scholar 

  20. Bodner RA, Housman DE, Kazantsev AG (2006) New directions for neurodegenerative disease therapy: using chemical compounds to boost the formation of mutant protein inclusions. Cell Cycle 5(14):1477–1480

    Article  CAS  PubMed  Google Scholar 

  21. Kazantsev AG, Kolchinsky AM (2008) Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson disease. Arch Neurol 65(12):1577–1581. doi:10.1001/archneur.65.12.1577

    Article  PubMed  Google Scholar 

  22. Yamin G, Uversky VN, Fink AL (2003) Nitration inhibits fibrillation of human alpha-synuclein in vitro by formation of soluble oligomers. FEBS Lett 542(1–3):147–152

    Article  CAS  PubMed  Google Scholar 

  23. Auluck PK, Caraveo G, Lindquist S (2010) Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 26:211–233. doi:10.1146/annurev.cellbio.042308.113313

    Article  CAS  PubMed  Google Scholar 

  24. Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277(14):11970–11978. doi:10.1074/jbc.M109541200

    Article  CAS  PubMed  Google Scholar 

  25. Gadad BS, Britton GB, Rao KS (2011) Targeting oligomers in neurodegenerative disorders: lessons from alpha-synuclein, tau, and amyloid-beta peptide. J Alzheimers Dis 24(Suppl 2):223–232. doi:10.3233/JAD-2011-110182

    CAS  PubMed  Google Scholar 

  26. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715. doi:10.1021/bi961799n

    Article  CAS  PubMed  Google Scholar 

  27. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744. doi:10.1074/jbc.M010907200

    Article  CAS  PubMed  Google Scholar 

  28. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073. doi:10.1006/jmbi.2001.4538

    Article  CAS  PubMed  Google Scholar 

  29. Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234

    Article  CAS  PubMed  Google Scholar 

  30. Brown DR (2010) Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life 62(5):334–339. doi:10.1002/iub.316

    CAS  PubMed  Google Scholar 

  31. Oueslati A, Fournier M, Lashuel HA (2010) Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson’s disease pathogenesis and therapies. Prog Brain Res 183:115–145. doi:10.1016/S0079-6123(10)83007-9

    Article  CAS  PubMed  Google Scholar 

  32. Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37. doi:10.1111/j.1471-4159.2007.04764.x

    CAS  PubMed  Google Scholar 

  33. Stefani M (2010) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. Febs J 277(22):4602–4613. doi:10.1111/j.1742-4658.2010.07889.x

    Article  CAS  PubMed  Google Scholar 

  34. van Rooijen BD, Claessens MM, Subramaniam V (2010) Membrane permeabilization by oligomeric alpha-synuclein: in search of the mechanism. PLoS One 5(12):e14292. doi:10.1371/journal.pone.0014292

    Article  PubMed  Google Scholar 

  35. Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276(47):44284–44296. doi:10.1074/jbc.M105343200

    Article  CAS  PubMed  Google Scholar 

  36. Santner A, Uversky VN (2010) Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 2(6):378–392. doi:10.1039/b926659c

    Article  CAS  PubMed  Google Scholar 

  37. Gupta VB, Hegde ML, Rao KS (2006) Role of protein conformational dynamics and DNA integrity in relevance to neuronal cell death in neurodegeneration. Curr Alzheimer Res 3(4):297–309

    Article  CAS  PubMed  Google Scholar 

  38. Hegde ML, Rao KS (2007) DNA induces folding in alpha-synuclein: understanding the mechanism using chaperone property of osmolytes. Arch Biochem Biophys 464(1):57–69. doi:10.1016/j.abb.2007.03.042

    Article  CAS  PubMed  Google Scholar 

  39. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362):107–110. doi:10.1038/nature10324

    Article  CAS  PubMed  Google Scholar 

  40. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274(5290):1197–1199

    Article  CAS  PubMed  Google Scholar 

  41. Bekris LM, Mata IF, Zabetian CP (2010) The genetics of Parkinson disease. J Geriatr Psychiatry Neurol 23(4):228–242. doi:10.1177/0891988710383572

    Article  PubMed  Google Scholar 

  42. Nuytemans K, Meeus B, Crosiers D, Brouwers N, Goossens D, Engelborghs S, Pals P, Pickut B, Van den Broeck M, Corsmit E, Cras P, De Deyn PP, Del-Favero J, Van Broeckhoven C, Theuns J (2009) Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Hum Mutat 30(7):1054–1061. doi:10.1002/humu.21007

    Article  CAS  PubMed  Google Scholar 

  43. Nishioka K, Ross OA, Ishii K, Kachergus JM, Ishiwata K, Kitagawa M, Kono S, Obi T, Mizoguchi K, Inoue Y, Imai H, Takanashi M, Mizuno Y, Farrer MJ, Hattori N (2009) Expanding the clinical phenotype of SNCA duplication carriers. Mov Disord 24(12):1811–1819. doi:10.1002/mds.22682

    Article  PubMed  Google Scholar 

  44. Biere AL, Wood SJ, Wypych J, Steavenson S, Jiang Y, Anafi D, Jacobsen FW, Jarosinski MA, Wu GM, Louis JC, Martin F, Narhi LO, Citron M (2000) Parkinson’s disease-associated alpha-synuclein is more fibrillogenic than beta- and gamma-synuclein and cannot cross-seed its homologs. J Biol Chem 275(44):34574–34579. doi:10.1074/jbc.M005514200

    Article  CAS  PubMed  Google Scholar 

  45. Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, Hasegawa M (2009) Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 284(12):7940–7950. doi:10.1074/jbc.M807482200

    Article  CAS  PubMed  Google Scholar 

  46. Rospigliosi CC, McClendon S, Schmid AW, Ramlall TF, Barre P, Lashuel HA, Eliezer D (2009) E46K Parkinson’s-linked mutation enhances C-terminal-to-N-terminal contacts in alpha-synuclein. J Mol Biol 388(5):1022–1032. doi:10.1016/j.jmb.2009.03.065

    Article  CAS  PubMed  Google Scholar 

  47. Puschmann A, Ross OA, Vilarino-Guell C, Lincoln SJ, Kachergus JM, Cobb SA, Lindquist SG, Nielsen JE, Wszolek ZK, Farrer M, Widner H, van Westen D, Hagerstrom D, Markopoulou K, Chase BA, Nilsson K, Reimer J, Nilsson C (2009) A Swedish family with de novo alpha-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat Disord 15(9):627–632. doi:10.1016/j.parkreldis.2009.06.007

    Article  PubMed  Google Scholar 

  48. Michell AW, Barker RA, Raha SK, Raha-Chowdhury R (2005) A case of late onset sporadic Parkinson’s disease with an A53T mutation in alpha-synuclein. J Neurol Neurosurg Psychiatry 76(4):596–597. doi:10.1136/jnnp.2004.046425

    Article  CAS  PubMed  Google Scholar 

  49. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. doi:10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  50. Grimm S, Hoehn A, Davies KJ, Grune T (2011) Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease. Free Radic Res 45(1):73–88. doi:10.3109/10715762.2010.512040

    Article  CAS  PubMed  Google Scholar 

  51. Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378(5):1104–1115. doi:10.1016/j.jmb.2008.03.017

    Article  CAS  PubMed  Google Scholar 

  52. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281(40):29739–29752. doi:10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  53. Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, Chiappe D, Moniatte M, Schneider BL, Aebischer P, Eliezer D, Zweckstetter M, Masliah E, Lashuel HA (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 30(9):3184–3198. doi:10.1523/JNEUROSCI.5922-09.2010

    Article  CAS  PubMed  Google Scholar 

  54. Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA (2010) Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem 285(4):2807–2822. doi:10.1074/jbc.M109.081950

    Article  CAS  PubMed  Google Scholar 

  55. Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA (2002) Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. Faseb J 16(2):210–212. doi:10.1096/fj.01-0517fje

    CAS  PubMed  Google Scholar 

  56. Neumann M, Kahle PJ, Giasson BI, Ozmen L, Borroni E, Spooren W, Muller V, Odoy S, Fujiwara H, Hasegawa M, Iwatsubo T, Trojanowski JQ, Kretzschmar HA, Haass C (2002) Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. J Clin Invest 110(10):1429–1439. doi:10.1172/JCI15777

    CAS  PubMed  Google Scholar 

  57. Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P (2009) Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 18(5):872–887. doi:10.1093/hmg/ddn417

    CAS  PubMed  Google Scholar 

  58. Malkus KA, Tsika E, Ischiropoulos H (2009) Oxidative modifications, mitochondrial dysfunction, and impaired protein degradation in Parkinson’s disease: how neurons are lost in the Bermuda triangle. Mol Neurodegener 4:24. doi:10.1186/1750-1326-4-24

    Article  PubMed  Google Scholar 

  59. Ditaranto K, Tekirian TL, Yang AJ (2001) Lysosomal membrane damage in soluble Abeta-mediated cell death in Alzheimer’s disease. Neurobiol Dis 8(1):19–31. doi:10.1006/nbdi.2000.0364

    Article  CAS  PubMed  Google Scholar 

  60. Uversky VN, Yamin G, Souillac PO, Goers J, Glaser CB, Fink AL (2002) Methionine oxidation inhibits fibrillation of human alpha-synuclein in vitro. FEBS Lett 517(1–3):239–244

    Article  CAS  PubMed  Google Scholar 

  61. Yamin G, Glaser CB, Uversky VN, Fink AL (2003) Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J Biol Chem 278(30):27630–27635. doi:10.1074/jbc.M303302200

    Article  CAS  PubMed  Google Scholar 

  62. Uversky VN, Yamin G, Munishkina LA, Karymov MA, Millett IS, Doniach S, Lyubchenko YL, Fink AL (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134(1):84–102. doi:10.1016/j.molbrainres.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  63. Souza JM, Giasson BI, Chen Q, Lee VM, Ischiropoulos H (2000) Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem 275(24):18344–18349. doi:10.1074/jbc.M000206200

    Article  CAS  PubMed  Google Scholar 

  64. Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ, Lynch DR, Lee VM, Ischiropoulos H (2004) Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem 279(46):47746–47753. doi:10.1074/jbc.M408906200

    Article  CAS  PubMed  Google Scholar 

  65. Uchida K, Sakai K, Itakura K, Osawa T, Toyokuni S (1997) Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch Biochem Biophys 346(1):45–52

    Article  CAS  PubMed  Google Scholar 

  66. Vicente Miranda H, Outeiro TF (2010) The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 221(1):13–25. doi:10.1002/path.2682

    Article  PubMed  Google Scholar 

  67. Padmaraju V, Bhaskar JJ, Prasada Rao UJ, Salimath PV, Rao KS (2011) Role of advanced glycation on aggregation and DNA binding properties of alpha-synuclein. J Alzheimers Dis 24(Suppl 2):211–221. doi:10.3233/JAD-2011-101965

    CAS  PubMed  Google Scholar 

  68. Kurz A, Rabbani N, Walter M, Bonin M, Thornalley P, Auburger G, Gispert S (2011) Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cell Mol Life Sci 68(4):721–733. doi:10.1007/s00018-010-0483-7

    Article  CAS  PubMed  Google Scholar 

  69. Negre-Salvayre A, Salvayre R, Auge N, Pamplona R, Portero-Otin M (2009) Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 11(12):3071–3109. doi:10.1089/ARS.2009.2484

    Article  CAS  PubMed  Google Scholar 

  70. Coker LH, Wagenknecht LE (2011) Advanced glycation end products, diabetes, and the brain. Neurology 77(14):1326–1327. doi:10.1212/WNL.0b013e318231532b

    Article  PubMed  Google Scholar 

  71. Yamagishi S (2011) Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 46(4):217–224. doi:10.1016/j.exger.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  72. Nawale RB, Mourya VK, Bhise SB (2006) Non-enzymatic glycation of proteins: a cause for complications in diabetes. Indian J Biochem Biophys 43(6):337–344

    CAS  PubMed  Google Scholar 

  73. Shaikh S, Nicholson LF (2008) Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86(9):2071–2082. doi:10.1002/jnr.21644

    Article  CAS  PubMed  Google Scholar 

  74. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116

    Article  CAS  PubMed  Google Scholar 

  75. Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans 21(2):549–553

    CAS  PubMed  Google Scholar 

  76. McPherson JD, Shilton BH, Walton DJ (1988) Role of fructose in glycation and cross-linking of proteins. Biochemistry 27(6):1901–1907

    Article  CAS  PubMed  Google Scholar 

  77. Grillo MA, Colombatto S (2008) Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 35(1):29–36. doi:10.1007/s00726-007-0606-0

    Article  CAS  PubMed  Google Scholar 

  78. Choei H, Sasaki N, Takeuchi M, Yoshida T, Ukai W, Yamagishi S, Kikuchi S, Saito T (2004) Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathol 108(3):189–193. doi:10.1007/s00401-004-0871-x

    Article  CAS  PubMed  Google Scholar 

  79. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293(5528):263–269. doi:10.1126/science.1060627

    Article  CAS  PubMed  Google Scholar 

  80. Cole RN, Hart GW (2001) Cytosolic O-glycosylation is abundant in nerve terminals. J Neurochem 79(5):1080–1089

    Article  CAS  PubMed  Google Scholar 

  81. Tompkins MM, Gai WP, Douglas S, Bunn SJ (2003) Alpha-synuclein expression localizes to the Golgi apparatus in bovine adrenal medullary chromaffin cells. Brain Res 984(1–2):233–236

    Article  CAS  PubMed  Google Scholar 

  82. Pashikanti S, Boissonneault GA, Cervantes-Laurean D (2011) Ex vivo detection of histone H1 modified with advanced glycation end products. Free Radic Biol Med 50(10):1410–1416. doi:10.1016/j.freeradbiomed.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  83. Chen L, Wei Y, Wang X, He R (2010) Ribosylation rapidly induces alpha-synuclein to form highly cytotoxic molten globules of advanced glycation end products. PLoS One 5(2):e9052. doi:10.1371/journal.pone.0009052

    Article  PubMed  Google Scholar 

  84. Takeuchi M, Yamagishi S (2004) TAGE (toxic AGEs) hypothesis in various chronic diseases. Med Hypotheses 63(3):449–452. doi:10.1016/j.mehy.2004.02.042

    Article  CAS  PubMed  Google Scholar 

  85. Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104. doi:10.1007/s11010-010-0563-x

    Article  CAS  PubMed  Google Scholar 

  86. Munch G, Westcott B, Menini T, Gugliucci A (2010) Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids. doi:10.1007/s00726-010-0777-y

  87. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619

    CAS  PubMed  Google Scholar 

  88. Smith MA, Perry G (1994) Alzheimer disease: an imbalance of proteolytic regulation? Med Hypotheses 42(4):277–279

    Article  CAS  PubMed  Google Scholar 

  89. Choi YG, Lim S (2010) N(Varepsilon)-(carboxymethyl)lysine linkage to alpha-synuclein and involvement of advanced glycation end products in alpha-synuclein deposits in an MPTP-intoxicated mouse model. Biochimie 92(10):1379–1386. doi:10.1016/j.biochi.2010.06.025

    Article  CAS  PubMed  Google Scholar 

  90. Munch G, Luth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of alpha-synuclein by advanced glycation endproducts—an early pathophysiological step in Lewy body formation? J Chem Neuroanat 20(3–4):253–257

    Article  CAS  PubMed  Google Scholar 

  91. Lee D, Park CW, Paik SR, Choi KY (2009) The modification of alpha-synuclein by dicarbonyl compounds inhibits its fibril-forming process. Biochim Biophys Acta 1794(3):421–430. doi:10.1016/j.bbapap.2008.11.016

    Article  CAS  PubMed  Google Scholar 

  92. Dalfo E, Portero-Otin M, Ayala V, Martinez A, Pamplona R, Ferrer I (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J Neuropathol Exp Neurol 64(9):816–830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Arturo Melo for supporting the research through Melo Brain Grant, Republic of Panama.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, E., Vasudevaraju, P., Hegde, M.L. et al. Recent Advances in α-Synuclein Functions, Advanced Glycation, and Toxicity: Implications for Parkinson’s Disease. Mol Neurobiol 47, 525–536 (2013). https://doi.org/10.1007/s12035-012-8328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8328-z

Keywords

Navigation