Skip to main content

Advertisement

Log in

Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Natural production of anti-cancer drug taxol from Taxus has proved to be environmentally unsustainable and economically unfeasible. Currently, bioengineering the biosynthetic pathway of taxol is an attractive alternative production approach. 10-deacetylbaccatin III-10-O-acetyl transferase (DBAT) was previously characterized as an acyltransferase, using 10-deacetylbaccatin III (10-DAB) and acetyl CoA as natural substrates, to form baccatin III in the taxol biosynthesis. Here, we report that other than the natural acetyl CoA (Ac-CoA) substrate, DBAT can also utilize vinyl acetate (VA), which is commercially available at very low cost, acylate quickly and irreversibly, as acetyl donor in the acyl transfer reaction to produce baccatin III. Furthermore, mutants were prepared via a semi-rational design in this work. A double mutant, I43S/D390R was constructed to combine the positive effects of the different single mutations on catalytic activity, and its catalytic efficiency towards 10-DAB and VA was successfully improved by 3.30-fold, compared to that of wild-type DBAT, while 2.99-fold higher than the catalytic efficiency of WT DBAT towards 10-DAB and Ac-CoA. These findings can provide a promising economically and environmentally friendly method for exploring novel acyl donors to engineer natural product pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cragg, G. M. (1998). Paclitaxel (Taxol®): A success story with valuable lessons for natural product drug discovery and development. Medicinal Research Reviews, 18, 315–331.

    Article  CAS  PubMed  Google Scholar 

  2. Kingston, D. G. (1994). Taxol: The chemistry and structure-activity relationships of a novel anticancer agent. Trends in Biotechnology, 12, 222–227.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, W., Gong, T., & Zhu, P. (2016). Advances in exploring alternative Taxol sources. RSC Advances, 6, 48800–48809.

    Article  CAS  Google Scholar 

  4. Vidensek, N., Lim, P., Campbell, A., & Carlson, C. (1990). Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. Journal of Natural Products, 53, 1609–1610.

    Article  CAS  PubMed  Google Scholar 

  5. Farjon, A., & Page, C. N. (1999). Conifers: Status survey and conservation action plan. Gland: IUCN.

    Google Scholar 

  6. Khosroushahi, A. Y., Valizadeh, M., Ghasempour, A., Khosrowshahli, M., Naghdibadi, H., Dadpour, M., & Omidi, Y. (2006). Improved Taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biology International, 30, 262–269.

    Article  CAS  PubMed  Google Scholar 

  7. Gallego, A., Malik, S., Yousefzadi, M., Makhzoum, A., Tremouillaux-Guiller, J., & Bonfill, M. (2017). Taxol from Corylus avellana: Paving the way for a new source of this anti-cancer drug. Plant Cell, Tissue and Organ Culture (PCTOC), 129, 1–16.

    Article  CAS  Google Scholar 

  8. Ajikumar, P. K., Xiao, W.-H., Tyo, K. E., Wang, Y., Simeon, F., Leonard, E., et al. (2010). Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 330, 70–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Badi, H., Abdoosi, V., & Farzin, N. (2015). New approach to improve taxol biosynthetic. Trakia Journal of Sciences, 2, 115–124.

    Article  Google Scholar 

  10. Nicolaou, K., Yang, Z., Liu, J., Ueno, H., Nantermet, P., Guy, R., et al. (1994). Total synthesis of taxol. Nature, 367, 630.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, K., & Baran, P. S. (2009). Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature, 459, 824.

    Article  CAS  PubMed  Google Scholar 

  12. Walker, K., & Croteau, R. (2001). Taxol biosynthetic genes. Phytochemistry, 58, 1–7.

    Article  CAS  PubMed  Google Scholar 

  13. Croteau, R., Ketchum, R. E., Long, R. M., Kaspera, R., & Wildung, M. R. (2006). Taxol biosynthesis and molecular genetics. Phytochemistry Reviews, 5, 75–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edgar, S., Li, F.-S., Qiao, K., Weng, J.-K., & Stephanopoulos, G. (2016). Engineering of taxadiene synthase for improved selectivity and yield of a key taxol biosynthetic intermediate. ACS Synthetic Biology, 6, 201–205.

    Article  CAS  PubMed  Google Scholar 

  15. Walker, K., & Croteau, R. (2000). Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proceedings of the National Academy of Sciences, 97, 583–587.

    Article  CAS  Google Scholar 

  16. Parc, G., Canaguier, A., Landré, P., Hocquemiller, R., Chriqui, D., & Meyer, M. (2002). Production of taxoids with biological activity by plants and callus culture from selected Taxus genotypes. Phytochemistry, 59, 725–730.

    Article  CAS  PubMed  Google Scholar 

  17. Walker, K., Long, R., & Croteau, R. (2002). The final acylation step in taxol biosynthesis: Cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proceedings of the National Academy of Sciences, 99, 9166–9171.

    Article  CAS  Google Scholar 

  18. Li, B.-J., Wang, H., Gong, T., Chen, J.-J., Chen, T.-J., Yang, J.-L., & Zhu, P. (2017). Improving 10-deacetylbaccatin III-10-β-O-acetyltransferase catalytic fitness for Taxol production. Nature Communications, 8, 15544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Auria, J. C. (2006). Acyltransferases in plants: A good time to be BAHD. Current Opinion in Plant Biology, 9, 331–340.

    Article  CAS  PubMed  Google Scholar 

  20. Loncaric, C., Merriweather, E., & Walker, K. D. (2006). Profiling a taxol pathway 10β-acetyltransferase: Assessment of the specificity and the production of baccatin III by in vivo acetylation in E. coli. Chemistry & Biology, 13, 309–317.

    Article  CAS  Google Scholar 

  21. Paravidino, M., & Hanefeld, U. (2011). Enzymatic acylation: Assessing the greenness of different acyl donors. Green Chemistry, 13, 2651–2657.

    Article  CAS  Google Scholar 

  22. Brand, J., Pecastaings, G., & Sèbe, G. (2017). A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters. Carbohydrate Polymers, 169, 189–197.

    Article  CAS  PubMed  Google Scholar 

  23. Faber, K., & Riva, S. (1992). Enzyme-catalyzed irreversible acyl transfer. Synthesis, 1992, 895–910.

    Article  Google Scholar 

  24. Hanefeld, U. (2003). Reagents for (ir) reversible enzymatic acylations. Organic & Biomolecular Chemistry, 1, 2405–2415.

    Article  CAS  Google Scholar 

  25. Quin, M. B., & Schmidt-Dannert, C. (2011). Engineering of biocatalysts: From evolution to creation. ACS Catalysis, 1, 1017–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, H. P., Xun, L., & Xie, X. S. (1998). Single-molecule enzymatic dynamics. Science, 282, 1877–1882.

    Article  CAS  Google Scholar 

  27. Marchetti, L., & Levine, M. (2011). Biomimetic catalysis. ACS Catalysis, 1, 1090–1118.

    Article  CAS  Google Scholar 

  28. Klebe, G. (2015). Applying thermodynamic profiling in lead finding and optimization. Nature Reviews Drug Discovery, 14, 95.

    Article  CAS  PubMed  Google Scholar 

  29. Han, F., Kang, L. Z., Zeng, X. L., Ye, Z. W., Guo, L. Q., & Lin, J. F. (2014). Bioproduction of baccatin III, an advanced precursor of paclitaxol, with transgenic Flammulina velutipes expressing the 10-deacetylbaccatin III-10-O-acetyl transferase gene. Journal of the Science of Food and Agriculture, 94, 2376–2383.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Program of Guangdong Province (Grants 2014B050505018, 2014B020205003) and the National Natural Science Foundation of China (Grants 31071837, 31372116, 31572178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Fang Lin or Li-Qiong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, SL., Wei, T., Lin, JF. et al. Bio-production of Baccatin III, an Important Precursor of Paclitaxel by a Cost-Effective Approach. Mol Biotechnol 60, 492–505 (2018). https://doi.org/10.1007/s12033-018-0090-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0090-7

Keywords

Navigation