Skip to main content

Advertisement

Log in

Comparative Effect of Human Platelet Derivatives on Proliferation and Osteogenic Differentiation of Menstrual Blood-Derived Stem Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Menstrual blood has been recognized as an easily accessible and inexpensive source of stem cells, in recent years. To establish a safe and efficient protocol for development of menstrual blood-derived stem cells (MenSCs) into osteoblasts, the effect of substitution of fetal bovine serum (FBS) with human platelet derivatives (HPDs) was evaluated during proliferation and osteogenic differentiation of MenSCs. To this aim, parallel experiments were carried out on cultured MenSCs in the presence of platelet-rich plasma, platelet-poor plasma, platelet gel supernatant, or human platelet releasate (HPR), and compared with cells cultured in conventional growth medium containing FBS. There was no significant difference between growth curves of cultured MenSCs in presence of different fortified media. However, the MenSCs demonstrated variant differentiation patterns in response to FBS replacement with HPDs. Mineralization, as judged by Alizarin red staining, was significantly higher in cells differentiated in the presence of HPR compared to cells that were fortified with other medium supplements. A greater osteocalcin production level, alkaline phosphatase activity, and mRNA expression of osteogenic-specific genes in differentiated MenSCs under HPR condition further confirmed our previous findings. Based on our data, FBS substitution by HPDs not only allows for successful MenSCs proliferation, but also promotes MenSCs development into osteoblasts. The effectiveness of HPR on osteogenic differentiation of MenSCs represents an important novel step toward safe and applied stem cell therapy of bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arvidson, K., BasM, Abdallah, Applegate, L. A., Baldini, N., Cenni, E., Gomez-Barrena, E., et al. (2011). Bone regeneration and stem cells. Journal of Cellular and Molecular Medicine, 15, 718–746.

    Article  CAS  Google Scholar 

  2. Henningson, C. T, Jr, Stanislaus, M. A., & Gewirtz, A. M. (2003). Embryonic and adult stem cell therapy. The Journal of Allergy and Clinical Immunology, 111, 745–753.

    Article  Google Scholar 

  3. Edwards, R. G. (2004). Stem cells today: Bone marrow stem cells. Reproductive Biomedicine Online, 9, 541–583.

    Article  CAS  Google Scholar 

  4. Czyz, J., Wiese, C., Rolletschek, A., Blyszczuk, P., Cross, M., & Wobus, A. M. (2003). Potential of embryonic and adult stem cells in vitro. Biological Chemistry, 384(10–11), 1391–1409.

    CAS  Google Scholar 

  5. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.

    Article  CAS  Google Scholar 

  6. Gutierrez-Aranda, I., Ramos-Mejia, V., Bueno, C., Munoz-Lopez, M., Real, P. J., Mácia, A., et al. (2010). Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless of the site of injection. Stem Cells, 28, 1568–1570.

    Article  Google Scholar 

  7. Meng, X., Ichim, T. E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., et al. (2007). Endometrial regenerative cells: a novel stem cell population. Journal of Translational Medicine, 5, 57.

    Article  CAS  Google Scholar 

  8. Patel, A. N., Park, E., Kuzman, M., Benetti, F., Silva, F. J., & Allickson, J. G. (2008). Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplantation, 17, 303–311.

    Article  Google Scholar 

  9. Zhang, M. J., Liu, B., Xia, W., Sun, Z. Y., & Lu, K. H. (2009). Could cells from menstrual blood be a new source for cell-based therapies?. Medical Hypotheses, 72, 252–254.

    Article  Google Scholar 

  10. Musina, R. A., Belyavski, A. V., Tarusova, O. V., Solovyova, E. V., & Sukhikh, G. T. (2008). Endometrial mesenchymal stem cells isolated from the menstrual blood. Bulletin of Experimental Biology and Medicine, 145, 539–543.

    Article  CAS  Google Scholar 

  11. Masuda, H., Matsuzaki, Y., Hiratsu, E., Ono, M., Nagashima, T., Kajitani, T., et al. (2010). Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One, 5(4), e10387.

    Article  Google Scholar 

  12. Allickson, J. G., Sanchez, A., Yefimenko, N., Borlongan, C. V., & Sanberg, P. R. (2011). Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. The Open Stem Cell Journal, 3, 4–10.

    Article  Google Scholar 

  13. Borlongan, C. V., Kaneko, Y., Maki, M., Yu, S. J., Ali, M., Allickson, J. G., et al. (2010). Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells and Development, 19(4), 439–452.

    Article  CAS  Google Scholar 

  14. de Carvalho, Rodrigues D., Asensi, K. D., Vairo, L., Azevedo-Pereira, R. L., Silva, R., Rondinelli, E., et al. (2012). Human menstrual blood-derived mesenchymal cells as a cell source of rapid and efficient nuclear reprogramming. Cell Transplantation, 21, 2215–2224.

    Article  Google Scholar 

  15. Li, Y., Li, X., Zhao, H., Feng, R., Zhang, X., Tai, D., et al. (2013). Efficient induction of pluripotent stem cells from menstrual blood. Stem Cells and Development, 22(7), 1147–1158.

    Article  CAS  Google Scholar 

  16. Sanberg, P. R., Borlongan, C. V., Saporta, S., & Cameron, D. F. (1996). Testis-derived Sertoli cells survive and provide localized immunoprotection for xenografts in rat brain. Nature Biotechnology, 14, 1692–1695.

    Article  CAS  Google Scholar 

  17. Sanberg, P. R., Borlongan, C. V., Othberg, A. I., Saporta, S., Freeman, T. B., & Cameron, D. F. (1997). Testis-derived Sertoli cells have a trophic effect on dopamine neurons and alleviate hemiparkinsonism in rats. Nature Medicine, 3, 1129–1132.

    Article  CAS  Google Scholar 

  18. Zhong, Z., Patel, A. N., Ichim, T. E., Riordan, N. H., Wang, H., Min, W. P., et al. (2009). Feasibility investigation of allogeneic endometrial regenerative cells. Journal of Translational Medicine, 7, 15.

    Article  Google Scholar 

  19. Darzi, S., Zarnani, A. H., Jeddi-Tehrani, M., Entezami, K., Mirzadegan, E., Akhondi, M. M., et al. (2012). Osteogenic differentiation of stem cells derived from menstrual blood- versus bone marrow in the presence of human platelet releasate. Tissue Engineering Part A, 18(15–16), 1720–1728.

    Article  CAS  Google Scholar 

  20. Schallmoser, K., Bartmann, C., Rohde, E., Reinisch, A., Kashofer, K., Stadelmeyer, E., et al. (2007). Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion, 47, 1436–1446.

    Article  CAS  Google Scholar 

  21. Capelli, C., Domenghini, M., Borleri, G., Bellavita, P., Poma, R., Carobbio, A., et al. (2007). Human platelet lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts. Bone Marrow Transplantation, 40, 785–791.

    Article  CAS  Google Scholar 

  22. Duan, J., Kuang, W., Tan, J., Li, H., Zhang, Y., Hirotaka, K., et al. (2011). Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells. Molecular Biology Reports, 38, 2485–2490.

    Article  CAS  Google Scholar 

  23. Vater, C., Kasten, P., & Stiehler, M. (2011). Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 7, 463–477.

    Article  CAS  Google Scholar 

  24. Chevallier, N., Anagnostou, F., Zilber, S., Bodivit, G., Maurin, S., Barrault, A., et al. (2010). Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials, 31, 270–278.

    Article  CAS  Google Scholar 

  25. Carrancioa, S., Lo′pez-Holgadoa, N., Sánchez-Guijo, F. M., Villarón, E., Barbado, V., Tabera, S., et al. (2008). Optimization of mesenchymal stem cell expansion procedures by cell separation and culture conditions modification. Experimental Hematology, 36, 1014–1021.

    Article  Google Scholar 

  26. Marx, R. E., Carlson, E. R., Eichstaedt, R. M., Schimmele, S. R., Strauss, J. E., & Georgeff, K. R. (1998). Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 85, 638–646.

    CAS  Google Scholar 

  27. Weibrich, G., Hansen, T., Kleis, W., Buch, R., & Hitzler, W. E. (2004). Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration. Bone, 34, 665–671.

    Article  CAS  Google Scholar 

  28. Whitman, D. H., Berry, R. L., & Green, D. M. (1997). Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. Journal of Oral and Maxillofacial Surgery, 55, 1294–1299.

    Article  CAS  Google Scholar 

  29. Gruber, R., Karreth, F., Fischer, M. B., & Watzek, G. (2002). Platelet-released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL-dependent mechanism. Bone, 30, 726–732.

    Article  CAS  Google Scholar 

  30. Borzini, P., & Mazzucco, I. (2007). Platelet-rich plasma (PRP) and platelet derivatives for topical therapy. What is true from the biologic view point? ISBT Science Series, 2, 272–281.

    Article  CAS  Google Scholar 

  31. Bieback, K., Hecker, A., Kocaömer, A., Lannert, H., Schallmoser, K., Strunk, D., et al. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27, 2331–2341.

    Article  CAS  Google Scholar 

  32. Mannello, F., & Tonti, G. A. (2007). Concise review: No break- throughs for human mesenchymal and embryonic stem cell culture: Conditioned medium, feeder layer, or feeder- free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells, 25(7), 1603–1609.

    Article  CAS  Google Scholar 

  33. Everts, P. A., Brown Mahoney, C., Hoffmann, J. J., Schönberger, J. P., Box, H. A., van Zundert, A., et al. (2006). Platelet-rich plasma preparation using three devices: Implications for platelet activation and platelet growth factor release. Growth Factors, 24(3), 165–171.

    Article  CAS  Google Scholar 

  34. Mazzocca, A. D., McCarthy, M. B., Chowaniec, D. M., Cote, M. P., Romeo, A. A., Bradley, J. P., et al. (2012). Platelet-rich plasma differs according to preparation method and human variability. Journal of Bone and Joint Surgery American Volume, 94, 308–316.

    Article  Google Scholar 

  35. Rughetti, A., Giusti, I., D’Ascenzo, S., Leocata, P., Carta, G., Pavan, A., et al. (2008). Platelet gel-released supernatant modulates the angiogenic capability of human endothelial cells. Blood Transfusion, 6(1), 12–17.

    Google Scholar 

  36. Somers, P., Robyns, L., Nollet, E., De Somer, F., Cornelissen, M., Thierens, H., et al. (2012). Platelet gel supernatant as a potential tool to repopulate acellular heart valves. Cell Proliferation, 45(4), 378–385.

    Article  CAS  Google Scholar 

  37. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  38. Jaiswal, N., Haynesworth, S. E., Caplan, A. I., & Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 64, 295–312.

    Article  CAS  Google Scholar 

  39. Carpenter, T. O., Moltz, K. C., Ellis, B., Andreoli, M., McCarthy, T. L., Centrella, M., et al. (1998). Osteocalcin production in primary osteoblast cultures derived from normal and Hyp mice. Endocrinology, 139(1), 35–43.

    Article  CAS  Google Scholar 

  40. Kazemnejad, S., Allameh, A., Gharehbaghian, A., Soleimani, M., Amirizadeh, N., & Jazayeri, M. (2008). Efficient replacing of fetal bovine serum with human platelet releasate during propagation and differentiation of human bone-marrow-derived mesenchymal stem cells to functional hepatocyte like cells. Vox Sanguinis, 95, 149–158.

    Article  CAS  Google Scholar 

  41. Bonewald, L. F., & Dallas, S. L. (1994). Role of active and latent transforming growth factor-b in bone formation. Journal of Cellular Biochemistry, 55, 350–357.

    Article  CAS  Google Scholar 

  42. Centrella, M., Horowitz, M. C., Wozne, J. M., & McCarthy, T. L. (1994). Transforming growth factor-b gene family members and bone. Endocrine Reviews, 15, 27–39.

    CAS  Google Scholar 

  43. Maeda, S., Hayashi, M., Komiya, S., Imamura, T., & Miyazono, K. (2004). Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. The EMBO Journal, 23, 552–563.

    Article  CAS  Google Scholar 

  44. Murphy, M. B., Blashki, D., Buchanan, R. M., Yazdi, I. K., Ferrari, M., Simmons, P. J., et al. (2012). Adult and umbilical cord blood-derived platelet-rich plasma for mesenchymal stem cell proliferation, chemotaxis, and cryo-preservation. Biomaterials, 33(21), 5308–5316.

    Article  CAS  Google Scholar 

  45. Hamdan, A. A., Loty, S., Isaac, J., Bouchard, P., Berdal, A., & Sautier, J. M. (2009). Platelet-poor plasma stimulates the proliferation but inhibits the differentiation of rat osteoblastic cells in vitro. Clinical Oral Implants Research, 20(6), 616–623.

    Google Scholar 

  46. Rauch, Caroline, Feifel, Elisabeth, Amann, Eva-Maria, Spötl, Hans Peter, Schennach, Harald, Pfaller, Walter, et al. (2011). Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX, 28(4/11), 305–316.

    Google Scholar 

  47. Kurita, M., Aiba-Kojima, E., Shigeura, T., Matsumoto, D., Suga, H., Inoue, K., et al. (2008). Differential effects of three preparations of human serum on expansion of various types of human cells. Plastic and Reconstructive Surgery, 122(2), 438–448.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research grant from Research Vice-chancellor of Guilan University of Medical Science. We thank Mojtaba Hosseinpoor for technical assistance.

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaieh Kazemnejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazemnejad, S., Najafi, R., Zarnani, A.H. et al. Comparative Effect of Human Platelet Derivatives on Proliferation and Osteogenic Differentiation of Menstrual Blood-Derived Stem Cells. Mol Biotechnol 56, 223–231 (2014). https://doi.org/10.1007/s12033-013-9698-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9698-9

Keywords

Navigation