Skip to main content

Advertisement

Log in

Tumor-associated macrophages of the M1/M2 phenotype are involved in the regulation of malignant biological behavior of breast cancer cells through the EMT pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. More and more studies have shown that the tumor immune microenvironment (TME) of TNBC is closely related to its poor prognosis and early metastasis. We try to explain how tumor-associate macrophages (TAMs), an important component of the TME, function in the matrix of TNBC. Therefore, we induced THP-1 cells to become M1-TAMs and M2-TAMs, investigated their influence on breast cancer cells. 82 TNBC paraffin samples were made into tissue microarrays. The expression of macrophages makers were measured by immunohistochemistry. Scratch assay, Transwell assay, CCK-8 cell proliferation assay were performed in the co-culture system of breast cancer cells lines and macrophages to observe the invasion and proliferation ability of breast cancer cell lines. Western Blot (WB) was performed to detect the expression of E-cadherin (CDH1) and N-cadherin (CDH2). M2-TAMs were more numerous than M1-TAMs in the matrix of TNBC cancer nests and associated with poor prognosis. M2-TAMs promoted the invasion, migration, and proliferation of TNBC cells. M1-TAMs had inhibitory effects. In MCF-7 cells, WB showed a decrease in CDH1 and an increase in CDH2. In MDA-MB-231 cells and BT549 cells, CDH2 expression was reduced and CDH1 expression was increased. All of the above results were statistically significant, p < 0.001. M2-TAMs were more numerous in TNBC and associated with poor prognosis. M2-TAMs promoted the invasion, migration, and proliferation of breast cancer cells. The mechanism may be related to the epithelial-mesenchymal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12040916.

    Article  Google Scholar 

  2. Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18(4):479–89. https://doi.org/10.6004/jnccn.2020.7554.

    Article  CAS  PubMed  Google Scholar 

  3. Deepak K, Vempati R, Nagaraju GP, Dasari VR, S N, Rao DN, et al. Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res. 2020;153:104683. https://doi.org/10.1016/j.phrs.2020.104683.

  4. Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13(6):1833–42. https://doi.org/10.1021/acs.molpharmaceut.5b00987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lundgren C, Bendahl PO, Ekholm M, Fernö M, Forsare C, Krüger U, et al. Tumour-infiltrating lymphocytes as a prognostic and tamoxifen predictive marker in premenopausal breast cancer: data from a randomised trial with long-term follow-up. Breast Cancer Res. 2020;22(1):140. https://doi.org/10.1186/s13058-020-01364-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084. https://doi.org/10.3389/fimmu.2019.01084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paul S, Chhatar S, Mishra A, Lal G. Natural killer T cell activation increases iNOS(+)CD206(-) M1 macrophage and controls the growth of solid tumor. J Immunother Cancer. 2019;7(1):208. https://doi.org/10.1186/s40425-019-0697-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ, et al. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics. 2018;8(21):5842–54. https://doi.org/10.7150/thno.26888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun. 2018;9(1):21. https://doi.org/10.1038/s41467-017-02481-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Onal S, Turker-Burhan M, Bati-Ayaz G, Yanik H, Pesen-Okvur D. Breast cancer cells and macrophages in a paracrine-juxtacrine loop. Biomaterials. 2021;267:120412. https://doi.org/10.1016/j.biomaterials.2020.120412.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Hao E, Pan X, Tan D, Du Z, Xie J, et al. Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY). 2019;11(19):8347–61. https://doi.org/10.18632/aging.102323.

    Article  CAS  Google Scholar 

  12. Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, et al. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal. 2021;86:110075. https://doi.org/10.1016/j.cellsig.2021.110075.

    Article  CAS  PubMed  Google Scholar 

  13. Pellizzari G, Hoskin C, Crescioli S, Mele S, Gotovina J, Chiaruttini G, et al. IgE re-programs alternatively-activated human macrophages towards pro-inflammatory anti-tumoural states. EBioMedicine. 2019;43:67–81. https://doi.org/10.1016/j.ebiom.2019.03.080.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084. https://doi.org/10.3389/fimmu.2020.583084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu SQ, Waaijer S, Zwager MC, de Vries E, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: innocent bystander or important player. Cancer Treat Rev. 2018;70:178–89. https://doi.org/10.1016/j.ctrv.2018.08.010.

    Article  CAS  PubMed  Google Scholar 

  16. Medrek C, Pontén F, Jirström K, Leandersson K. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer. 2012;12(:306. doi:https://doi.org/10.1186/1471-2407-12-306.

  17. Wang C, Cao M, Jiang X, Yao Y, Liu Z, Luo D. Macrophage balance fraction determines the degree of immunosuppression and metastatic ability of breast cancer. Int Immunopharmacol. 2021;97:107682. https://doi.org/10.1016/j.intimp.2021.107682.

    Article  CAS  PubMed  Google Scholar 

  18. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45. https://doi.org/10.1016/j.intimp.2014.08.002.

    Article  CAS  PubMed  Google Scholar 

  19. Lin L, Chen YS, Yao YD, Chen JQ, Chen JN, Huang SY, et al. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget. 2015;6(33):34758–73. https://doi.org/10.18632/oncotarget.5325.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pan Y, Wang W, Huang S, Ni W, Wei Z, Cao Y, et al. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J Cell Mol Med. 2019;23(10):6846–58. https://doi.org/10.1111/jcmm.14568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu L, Fu X, Chen X, Han X, Dong P. M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway. Cell Biol Int. 2017;41(9):960–8. https://doi.org/10.1002/cbin.10788.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13. https://doi.org/10.12703/P6-13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dias AS, Almeida CR, Helguero LA, Duarte IF. Metabolic crosstalk in the breast cancer microenvironment. Eur J Cancer. 2019;121:154–71. https://doi.org/10.1016/j.ejca.2019.09.002.

    Article  CAS  PubMed  Google Scholar 

  24. Kutryb-Zajac B, Harasim G, Jedrzejewska A, Krol O, Braczko A, Jablonska P, et al. Macrophage-derived adenosine deaminase 2 correlates with M2 macrophage phenotype in triple negative breast cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22073764.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–96. https://doi.org/10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  26. Chiang CF, Chao TT, Su YF, Hsu CC, Chien CY, Chiu KC, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget. 2017;8(13):20706–18. https://doi.org/10.18632/oncotarget.14982.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Felipe Lima J, Nofech-Mozes S, Bayani J, Bartlett JM. EMT in breast carcinoma—a review. J Clin Med. 2016. https://doi.org/10.3390/jcm5070065.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, et al. MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 2019;18(1):42. https://doi.org/10.1186/s12943-019-0988-0.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Williams MM, Christenson JL, Neill KI, Hafeez SA, Ihle CL, et al. MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer. NPJ Breast Cancer. 2021;7(1):64. https://doi.org/10.1038/s41523-021-00273-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biswas S, Mandal G, Roy Chowdhury S, Purohit S, Payne KK, Anadon C, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. J Immunol. 2019;203(12):3447–60. https://doi.org/10.4049/jimmunol.1900692.

    Article  CAS  PubMed  Google Scholar 

  31. Ryan D, Koziol J, ElShamy WM. Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep. 2019;9(1):19150. https://doi.org/10.1038/s41598-019-55702-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia XH, Feng GW, Wang ZL, Du Y, Shen C, Hui H, et al. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects. Oncotarget. 2016;7(15):20934–44. https://doi.org/10.18632/oncotarget.8064.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to all the peer reviewers and editors for their opinions and suggestions.

Funding

The present study was supported by the Innovative Research Group Project of the National Natural Science Foundation of China (No. 81872055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, J., Wang, L. et al. Tumor-associated macrophages of the M1/M2 phenotype are involved in the regulation of malignant biological behavior of breast cancer cells through the EMT pathway. Med Oncol 39, 83 (2022). https://doi.org/10.1007/s12032-022-01670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01670-7

Keywords

Navigation