Skip to main content
Log in

The Ascending Mesolimbic Cholinergic System—A Specific Division of the Reticular Activating System Involved in the Initiation of Negative Emotional States

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The review summarizes evidences from extensive studies suggesting that ascending mesolimbic cholinergic system (AMCS) that terminates in vast areas of forebrain and diencephalic limbic areas is responsible for specific generation of aversive arousal and aversive emotional state. This state is accompanied by emission of threatening and/or alarming vocalizations that served as a quantitative measure of the emotional response. The AMCS originates from the cholinergic neurons within the laterodorsal tegmental nucleus that have widespread and diffuse ascending connections. Activity of the AMCS induced by activation of the muscarinic cholinergic receptors in the terminal fields of this system, or by glutamate stimulation of neurons of the laterodorsal tegmental nucleus, brings about aversive state with alarming vocalizations. It is postulated that release of acetylcholine from the terminals of the AMCS in the vast areas of the forebrain and diencephalon serves as the initiator of the aversive emotional state with concomitant manifestations and alarming vocal signaling. It is concluded that the AMCS serves as a specific physiological, psychological, and social arousing and alarming system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AMCS:

Ascending mesolimbic cholinergic system

ARAS:

Ascending reticular activating system

ChAT:

Choline acetyltransferase

LDT:

Laterodorsal tegmental nucleus

References

  • Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216(1):53–68

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378(4):454–467

    Article  CAS  PubMed  Google Scholar 

  • Bass AH, Chagnaud BP (2012) Shared developmental and evolutionary origins for neural basis of vocal–acoustic and pectoral–gestural signaling. Proc Natl Acad Sci U S A 109(Suppl 1):10677–10684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berlucchi G (1997) One or many arousal systems? Reflections on some of Giuseppe Moruzzi's foresights and insights about the intrinsic regulation of brain activity. Arch Ital Biol 135:5–14

    CAS  PubMed  Google Scholar 

  • Berlucchi G (1999) Integration of brain activities: the roles of the diffusely projecting brainstem systems and the corpus callosum. Brain Res Bull 50(5–6):389–390

    Article  CAS  PubMed  Google Scholar 

  • Berlyne DE (1960) Conflict, arousal, and curiosity. McGraw-Hill, New York

    Book  Google Scholar 

  • Bihari A, Hrycyshyn AW, Brudzynski SM (2003) Role of the mesolimbic cholinergic projection to the septum in the production of 22 kHz alarm calls in rats. Brain Res Bull 60(3):263–274

    Article  CAS  PubMed  Google Scholar 

  • Bosch D, Schmid S (2006) Activation of muscarinic cholinergic receptors inhibits giant neurones in the caudal pontine reticular nucleus. Eur J Neurosci 24(7):1967–1975

    Article  PubMed  Google Scholar 

  • Brudzynski SM (1981) Growling component of vocalization as a quantitative index of carbachol-induced emotional-defensive response in cats. Acta Neurobiol Exp (Wars) 41(1):33–51

    CAS  Google Scholar 

  • Brudzynski SM (1994) Ultrasonic vocalization induced by intracerebral carbachol in rats: localization and a dose–response study. Behav Brain Res 63:133–143

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski S.M. (1998) Role of the mesolimbic cholinergic pathways in the initiation of vocalization in cats and rats. On-line presentation of the 5th Internet World Congress for Biomedical Sciences (INABIS '98) at McMaster University, Hamilton, ON Canada, (http://www.mcmaster.ca/inabis98/brudzynski/brudzynski0219/index.htm), © Internet Association for Biomedical Sciences, pp. 1–8.

  • Brudzynski SM (2001) Pharmacological and behavioral characteristics of 22 kHz alarm calls in rats. Neurosci Biobehav Rev 25:611–617

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM (2007) Ultrasonic calls of rats as indicator variables of negative or positive states: acetylcholine–dopamine interaction and acoustic coding. Behav Brain Res 182(2):261–273

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski S.M. (2010) Medial cholinoceptive vocalization strip in the cat and rat brains: initiation of defensive vocalizations. In: Handbook of mammalian vocalization. An Integrative Neuroscience Approach. Brudzynski S.M., ed., Handbook of behavioral neuroscience, vol. 19, Academic/Elsevier, Amsterdam, pp. 265–279.

  • Brudzynski SM (2013) Ethotransmission: communication of emotional states through ultrasonic vocalization in rats. Curr Opin Neurobiol 23(3):310–317

    Google Scholar 

  • Brudzynski SM, Barnabi F (1986) Contribution of the ascending cholinergic pathways in the production of ultrasonic vocalization in the rat. Behav Brain Res 80(1–2):145–152

    Google Scholar 

  • Brudzynski SM, Bihari F (1990) Ultrasonic vocalization in rats produced by cholinergic stimulation of the brain. Neurosci Letters 109:222–226

    Article  CAS  Google Scholar 

  • Brudzynski SM, Eckersdorf B (1988) Vocalization accompanying emotional-aversive response induced by carbachol in the cat. Reproducibility and dose–response study. Neuropsychopharmacology 1(4):311–320

    CAS  PubMed  Google Scholar 

  • Brudzynski SM, Holland G (2005) Acoustic characteristics of air puff-induced 22-kHz alarm calls in direct recordings. Neurosci Biobehav Rev 29(8):1169–1180

    Article  PubMed  Google Scholar 

  • Brudzynski SM, Mogenson GJ (1986) Decrease of locomotor activity by injections of carbachol into the anterior hypothalamic/preoptic area of the rat. Brain Res 376(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, Kiełczykowska E, Romaniuk A (1982) The effects of external stimuli on the emotional-aversive response evoked by intrahypothalamic carbachol injections. Behav Brain Res 4(1):33–43

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, McLachlan RS, Girvin JP (1989) Cholinergically mediated reduction of locomotor activity from the basal forebrain of the rat. Exp Neurol 105(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, Eckersdorf B, Golebiewski H (1990) Evidence for involvement of endogenous acetylcholine in emotional-aversive response in the cat. Prog Neuropsychopharmacol Biol Psychiatry 14(5):807–812

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, McLachlan RS, Bihari F, Girvin JP (1991a) Response of neurons of the rat anterior hypothalamic-preoptic area to carbachol. Brain Res Bull 26(6):929–934

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, McLachlan RS, Girvin JP (1991b) Involvement of M1 and M2 muscarinic receptors of the basal forebrain in cholinergically mediated changes in the rat locomotion. Prog Neuropsychopharmacol Biol Psychiatry 15(2):279–84

    Article  CAS  PubMed  Google Scholar 

  • Brudzynski SM, Eckersdorf B, Golebiewski H (1995) Regional specificity of the emotional aversive response induced by carbachol in the cat brain. A quantitative mapping study. J Psychiatr Neurosci 20:119–132

    CAS  Google Scholar 

  • Brudzynski SM, Kadishevitz L, Fu XW (1998) Mesolimbic component of the ascending cholinergic pathways: electrophysiological-pharmacological study. J Neurophysiol 79(4):1675–1686

    CAS  PubMed  Google Scholar 

  • Brudzynski SM, Iku A, Harness Neé Savoy A (2011) Activity of cholinergic neurons in the laterodorsal tegmental nucleus during emission of 22 kHz vocalization in rats. Behav Brain Res 225(1):276–283

    Article  CAS  PubMed  Google Scholar 

  • Consolo S, Bertorelli R, Forloni GL, Butcher LL (1990) Cholinergic neurons of the pontomesencephalic tegmentum release acetylcholine in the basal nuclear complex of freely moving rats. Neuroscience 37:717–723

    Article  CAS  PubMed  Google Scholar 

  • Cornwall J, Phillipson OT (1989) Single neurones of the basal forebrain and laterodorsal tegmental nucleus project by collateral axons to the olfactory bulb and the mediodorsal nucleus in the rat. Brain Res 491(1):194–8

    Article  CAS  PubMed  Google Scholar 

  • Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284

    Article  CAS  PubMed  Google Scholar 

  • Decsi L, Várszegi MK, Méhes J (1969) Direct chemical stimulation of various subcortical brain areas in unrestrained cats. In: Recent development of neurobiology in Hungary, vol. 2, Lissak K., ed., Académiai Kiadó, Budapest, pp. 182–211.

  • Domino EF, Dren AT, Yamamoto K-I (1967) Pharmacologic evidence for cholinergic mechanisms in neocortical and limbic activating systems. Prog Brain Res 27:337–364

    Article  CAS  PubMed  Google Scholar 

  • Eglen RM (2012) Overview of muscarinic receptor subtypes. In: Muscarinic receptors, Fryer AD, Christopoulos A, Nathanson NM, eds, Handb. Exp. Pharmacol., 208, 3–28

  • Fibiger HC (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388

    Article  Google Scholar 

  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardiner JE (1961) The inhibition of acetylcholine synthesis in brain by a hemicholinium. Biochem J 81:297–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallanger AE, Wainer BH (1988) Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 274(4):483–515

    Article  CAS  PubMed  Google Scholar 

  • Hoebel BG, Avena NM, Rada P (2007) Accumbens dopamine–acetylcholine balance in approach and avoidance. Curr Opin Pharmacol 7(6):617–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh TF, Pan JT (1990) Extracellular single-unit studies of suprachiasmatic neurons in brain slices. Effects of serotonin, dopamine, carbachol and LHRH. Chin J Physiol 33(3):255–68

    CAS  PubMed  Google Scholar 

  • Jones BE (1995) Reticular formation: cytoarchitecture, transmitters, and projections. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 155–171

    Google Scholar 

  • Jones BE (2003) Arousal systems. Front Biosci 8:s438–451

    Article  CAS  PubMed  Google Scholar 

  • Jones BE (2008) Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems. Ann NY Acad Sci 1129:26–34

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Cuello AC (1989) Afferents to the basal forebrain cholinergic cell area from pontomesencephalic—catecholamine, serotonin, and acetylcholine—neurons. Neuroscience 31(1):37–61

    Article  CAS  PubMed  Google Scholar 

  • Jones CK, Shannon HE (2004) Lesions of the laterodorsal tegmental nucleus disrupt prepulse inhibition of the acoustic startle reflex. Pharmacol Biochem Behav 78(2):229–37

    Article  CAS  PubMed  Google Scholar 

  • Kása P (1986) The cholinergic system in brain and spinal cord. Prog Neurobiol 26:211–272

    Article  PubMed  Google Scholar 

  • Kelley DB, Bass AH (2010) Neurobiology of vocal communication: mechanisms for sensorimotor integration and vocal patterning. Curr Opin Neurobiol 20(6):748–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler J, Markowitsch HJ, Sigg G (1986) Memory related role of the posterior cholinergic system. Int J Neurosci 30(1–2):101–119

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kim ES, Covey E, Kim JJ (2010) Social transmission of fear in rats: the role of 22-kHz ultrasonic distress vocalization. PLoS One 5(12):e15077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knapp DJ, Pohorecky LA (1995) An air-puff stimulus method for elicitation of ultrasonic vocalizations in rats. J Neurosci Methods 62(1–2):1–5

    Article  CAS  PubMed  Google Scholar 

  • Kohlmeier KA, Leonard CS (2006) Transmitter modulation of spike-evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX-482-sensitive calcium influx. Eur J Neurosci 23(5):1151–62

    Article  PubMed  Google Scholar 

  • Koyama Y, Toga T, Kayama Y, Sato A (1994) Regulation of regional blood flow in the laterodorsal thalamus by ascending cholinergic nerve fibers from the laterodorsal tegmental nucleus. Neurosci Res 20:79–84

    Article  CAS  PubMed  Google Scholar 

  • Kuraoka K. and Nakamura K. (2010) Vocalization as a specific trigger of emotional responses. In: Handbook of mammalian vocalization. An Integrative Neuroscience Approach. Brudzynski S.M., ed., Handbook of Behavioral Neuroscience, vol. 19, Academic/Elsevier, Amsterdam, pp. 167–175.

  • Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lemasson A, Remeuf K, Rossard A, Zimmermann E (2012) Cross-taxa similarities in affect-induced changes of vocal behavior and voice in arboreal monkeys. PLoS One 7(9):e45106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lin J-S, Anaclet C, Sergeeva OA, Haas HL (2011) The waking brain: an update. Cell Mol Life Sci 68:2499–2512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindsley DB, Bowden JW, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1(4):475–486

    Article  CAS  PubMed  Google Scholar 

  • Łopuch S, Popik P (2011) Cooperative behavior of laboratory rats (Rattus norvegicus) in an instrumental task. J Comp Psychol 125(2):250–253

    Article  PubMed  Google Scholar 

  • Losier BJ, Semba K (1993) Dual projections o single cholinergic and aminergic brainstem neurons to the thalamus and basal forebrain in the rat. Brain Res 604:41–52

    Article  CAS  PubMed  Google Scholar 

  • Machold R.P. (2013) Loss of rostral brainstem cholinergic activity results in decreased ultrasonic vocalization behavior and altered sensorimotor gaiting. Behav. Brain Res. (in press) doi: 10.1016/j.bbr.2013.06.030.

  • Magoun HW (1958) The waking brain. Charles C Thomas, Springfield

    Book  Google Scholar 

  • Marrocco RT, Witte EA, Davidson MC (1994) Arousal systems. Curr Opin Neurobiol 4(2):166–170

    Article  CAS  PubMed  Google Scholar 

  • McKinney M, Jacksonville MC (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Mellott JG, Motts SD, Schofield BR (2011) Multiple origins of cholinergic innervation of the cochlear nucleus. Neuroscience 180:138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58(2):265–271

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10(4):1185–201

    Article  CAS  PubMed  Google Scholar 

  • Morgane PJ, Stern WC (1972) Relationship of sleep to neuroanatomical circuits, biochemistry, and behavior. Ann N Y Acad Sci 193:95–111

    Article  CAS  PubMed  Google Scholar 

  • Moruzzi G (1958) The functional significance of the ascending reticular formation. Arch Ital Biol 96:17–28

    Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  • Motts SD, Schofield BR (2011) Cholinergic cells in the tegmentum send branching projections to the inferior colliculus and the medial geniculate body. Neurosci 179:120–30

    Article  CAS  Google Scholar 

  • Nauta WJ (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81(3):319–340

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brainstem reticular formation. In: Jasper H (ed) The reticular formation of the brain. Little Brown, Boston, pp 3–30

    Google Scholar 

  • Newman JD (2007) Neural circuits underlying crying and cry responding in mammals. Behav Brain Res 182:155–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Okabe S, Nagasawa M, Mogi K, Kikusui T (2012) The importance of mother–infant communication for social bond formation in mammals. Anim Sci J 83(6):446–452

    Article  PubMed  Google Scholar 

  • Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511(5):678–91

    Article  PubMed  Google Scholar 

  • Parsana AJ, Li N, Brown TH (2012) Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behav Brain Res 226(1):77–86

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel JC, Rossignol E, Rice ME, Machold RP (2012) Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat Commun 3:1172

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Sydney

    Google Scholar 

  • Rendall D, Owren MJ (2010) Vocalizations as tools for influencing the affect and behavior of others. In: Brudzynski SM (ed) Handbook of mammalian vocalization. An integrative neuroscience approach. Handbook of behavioral neuroscience, vol. 19. Academic/Elsevier, Amsterdam, pp 177–185

    Chapter  Google Scholar 

  • Robbins TW, Granon S, Muir JL, Durantou F, Harrison A, Everitt BJ (1998) Neural systems underlying arousal and attention. Implications for drug abuse. Ann N Y Acad Sci 846:222–37

    Article  CAS  PubMed  Google Scholar 

  • Routtenberg A (1968) The two-arousal hypothesis: reticular formation and limbic system. Psychol Rev 75(1):51–80

    Article  CAS  PubMed  Google Scholar 

  • Rowell PP, Volk KA, Li J, Bickford ME (2003) Investigations of the cholinergic modulation of GABA release in rat thalamus slices. Neuroscience 116(2):447–453

    Article  CAS  PubMed  Google Scholar 

  • Rukhadze I, Kubin L (2007) Mesopontine cholinergic projections to the hypoglossal motor nucleus. Neurosci Lett 413(2):121–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    Article  CAS  PubMed  Google Scholar 

  • Schofield BR, Motts SD, Mellott JG (2011) Cholinergic cells of the pontomesencephalic tegmentum: connections with auditory structures from cochlear nucleus to cortex. Hear Res 279(1–2):85–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and pedunculopontine nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323:387–410

    Article  CAS  PubMed  Google Scholar 

  • Shute CC, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    Article  CAS  PubMed  Google Scholar 

  • Siegel J (2004) Brain mechanisms that control sleep and waking. Naturwissenschaften 91:355–365

    Article  CAS  PubMed  Google Scholar 

  • Starzl TE, Taylor CW, Magoun HW (1951) Ascending conduction in reticular activating system, with special reference to the diencephalon. J Neurophysiol 14(6):461–471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surkis A, Taylor B, Peskin CS, Leonard CS (1996) Quantitative morphology of physiologically identified and intracellularly labeled neurons from the guinea-pig laterodorsal tegmental nucleus in vitro. Neurosci 74(2):375–392

    Article  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1993) Prepulse inhibition of acoustic startle in rats after lesions of the pedunculopontine tegmental nucleus. Behav Neurosci 107(1):104–117

    Article  CAS  PubMed  Google Scholar 

  • Umberg EN, Pothos EN (2011) Neurobiology of aversive states. Physiol Behav 104(1):69–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Várszegi MK, Decsi L (1967) Some characteristics of the rage reaction evoked by chemical stimulation of the hypothalamus. Acta Physiol Acad Sci Hung 32:61–68

    PubMed  Google Scholar 

  • Villarreal JE, Domino EF (1964) Evidence for two types of cholinergic receptors involved in EEG desynchronization. The Pharmacologist 6:192

    Google Scholar 

  • Wainer BH, Steininger TL, Roback JD, Burke-Watson MA, Mufson EJ, Kordower J (1993) Ascending cholinergic pathways: functional organization and implications for disease models. Prog Brain Res 98:9–30

    Article  CAS  PubMed  Google Scholar 

  • Wang H-L, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Europ J Neurosci 29:340–358

    Article  Google Scholar 

  • Weil JL (1974) A neurophysiological model of emotional and intentional behavior. Charles C Thomas, Springfield

    Google Scholar 

  • Wöhr M, Schwarting RKW (2010) Activation of limbic system structures by reply of ultrasonic vocalization in rats. In: Brudzynski SM (ed) Handbook of mammalian vocalization. An integrative neuroscience approach. Handbook of behavioral neuroscience, vol. 19. Academic/Elsevier, Amsterdam, pp 113–124

    Chapter  Google Scholar 

  • Woolf NJ, Harrison JB, Buchwald JS (1990) Cholinergic neurons of the feline pontomesencephalon. II. Ascending anatomical projections. Brain Res 520(1–2):55–72

    Article  CAS  PubMed  Google Scholar 

  • Ye M, Hayar A, Strotman B, Garcia-Rill E (2010) Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons. J Neurophysiol 103(5):2417–32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeomans JS (2012) Muscarinic receptors in brain stem and mesopontine cholinergic arousal functions. In: Muscarinic receptors, Fryer AD, Christopoulos A, Nathanson NM, eds, Handb. Exp. Pharmacol., 208, 243–259

  • Zant JC, Rozov S, Wigren HK, Panula P, Porkka-Heiskanen T (2012) Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci 32(38):13244–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW, Burke MW, Calakos N, Beaulieu JM, Vaucher E (2010) Confocal analysis of cholinergic and dopaminergic inputs onto pyramidal cells in the prefrontal cortex of rodents. Front Neuroanat 4(art. 21):1–14

    Google Scholar 

Download references

Acknowledgments

The experiments originating from the author's laboratory and preparation of this text were supported by the discovery grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan M. Brudzynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brudzynski, S.M. The Ascending Mesolimbic Cholinergic System—A Specific Division of the Reticular Activating System Involved in the Initiation of Negative Emotional States. J Mol Neurosci 53, 436–445 (2014). https://doi.org/10.1007/s12031-013-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0179-1

Keywords

Navigation