Skip to main content

Advertisement

Log in

Reactive Oxygen Species–Mediated Mitochondrial Dysfunction Triggers Sodium Valproate–Induced Cytotoxicity in Human Colorectal Adenocarcinoma Cells

  • Original Research
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Colorectal cancer (CRC) is one of the frequently diagnosed cancers worldwide. Currently used chemotherapeutic drugs have several side effects. Histone deacetylase (HDAC) enzyme inhibitors possess potential anti-cancer effects. Therefore, we investigated the cytotoxic potential of sodium valproate, a HDAC inhibitor in human colorectal adenocarcinoma (HT-29) cells.

Methods

MTT assay was used to analyze the cytotoxicity of HT-29 cells. Intracellular reactive oxygen species (ROS) induction was evaluated by dichloro-dihydro-fluorescein diacetate staining. Dual staining with acridine orange/ethidium bromide was used to investigate the morphology-related apoptotic cell death. Mitochondrial membrane potential was analyzed by rhodamine 123 staining. E-cadherin protein expression was examined by immunofluorescence staining.

Results

Sodium valproate at 2 and 4 mM/mL treatments significantly induced cytotoxicity. Increased intracellular ROS expression was observed in the cells treated with sodium valproate. This treatment also induced mitochondrial dissipation, apoptosis-related morphological damage, and E-cadherin expression in HT-29 cells.

Conclusions

Our present results suggest that sodium valproate is cytotoxic to HT-29 cells due to its pro-oxidative and apoptosis inducing potential. Sodium valproate can be used as an adjuvant along with standard chemotherapeutic agents in CRC patients after necessary in vivo and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sohaib M, Ezhilarasan D. Carbamazepine, a histone deacetylase inhibitor induces apoptosis in human colon adenocarcinoma cell line HT-29. J Gastrointest Cancer. 2020;51(2):564–70.

    Article  CAS  PubMed  Google Scholar 

  2. Gandomani H, Yousefi S, Aghajani M, Mohammadian-Hafshejani A, Tarazoj A, Pouyesh V, et al. Colorectal cancer in the world: incidence, mortality and risk factors. BMRAT. 2017;4(10):1656–75.

    Google Scholar 

  3. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683–91.

    Article  PubMed  Google Scholar 

  4. Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7(3):105–14.

    PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Song R, Gu D, Zhang X, Yu B, Liu B, et al. The role of GLI1 for 5-Fu resistance in colorectal cancer. Cell Biosci. 2017;7:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chen Y, Wang Y, Shi Y, Dai G. Timing of chemotherapy-induced neutropenia predicts prognosis in metastatic colon cancer patients: a retrospective study in mFOLFOX6 -treated patients. BMC Cancer. 2017;17:242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Metri K, Bhargav H, Chowdhury P, Koka PS. Ayurveda for chemo-radiotherapy induced side effects in cancer patients. J Stem Cells. 2013;8(2):115–29.

    PubMed  Google Scholar 

  8. Balagura G, Iapadre G, Verrotti A, Striano P. Moving beyond sodium valproate: choosing the right anti-epileptic drug in children. Expert Opin Pharmacother. 2019;20:1449–1456.

  9. Jain A, Haque I, Tayal V, Roy V. Valproic acid-induced acute pancreatitis. Indian J Psychiatry. 2019;61(4):421–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734–41.

    Article  CAS  PubMed  Google Scholar 

  11. Ropero S, Esteller M. The role of histone deacetylases (HDACs) in human cancer. Mol Oncol. 2007;1(1):19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.

    Article  CAS  PubMed  Google Scholar 

  13. Sun Y, Sun Y, Yue S, Wang Y, Lu F. Histone deacetylase inhibitors in cancer therapy. Curr Top Med Chem. 2018;18(28):2420–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lakshmaiah KC, Jacob LA, Aparna S, Lokanatha D, Saldanha SC. Epigenetic therapy of cancer with histone deacetylase inhibitors. J Cancer Res Ther. 2014;10(3):469–78.

    CAS  PubMed  Google Scholar 

  15. Ma X, Wang Y, Gu WP, Zhao X. The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J. 2017;58(5):349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tong XH, Zheng C, Jiang GJ, Dong SY. Sodium valproate enhances doxorubicin cytotoxicity in breast cancer cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 2015;35(1):62–5.

    CAS  PubMed  Google Scholar 

  17. Sargazi S, Saravani R, Zavar Reza J, Jaliani HZ, Mirinejad S, Rezaei Z, et al. Induction of apoptosis and modulation of homologous recombination DNA repair pathway in prostate cancer cells by the combination of AZD2461 and valproic acid. EXCLI J. 2019;18:485–98.

    PubMed  PubMed Central  Google Scholar 

  18. Li H, Zhang Z, Gao C, Wu S, Duan Q, Wu H, et al. Combination chemotherapy of valproic acid (VPA) and gemcitabine regulates STAT3/Bmi1 pathway to differentially potentiate the motility of pancreatic cancer cells. Cell Biosci. 2019;9:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Akgun O, Erkisa M, Ari F. Effective and new potent drug combination: histone deacetylase and Wnt/β-catenin pathway inhibitors in lung carcinoma cells. J Cell Biochem. 2019;120(9):15467–82.

    Article  CAS  PubMed  Google Scholar 

  20. Sanaei M, Kavoosi F. Effect of DNA methyltransferase in comparison to and in combination with histone deacetylase inhibitors on hepatocellular carcinoma HepG2 cell line. Asian Pac J Cancer Prev. 2019;20(4):1119–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, You W, Zheng J, Chi Y, Tang W, Du R. Valproic acid inhibits the angiogenic potential of cervical cancer cells via HIF-1α/VEGF signals. Clin Transl Oncol. 2016;18(11):1123–30.

    Article  CAS  PubMed  Google Scholar 

  22. PonselviInduja M, Ezhilarasan D, Ashok Vardhan N. Evolvulus alsinoides methanolic extract triggers apoptosis in HepG2 cells. Avicenna J Phytomed. 2018;8(6):504–12.

    Google Scholar 

  23. Gheena S, Ezhilarasan D. Syringic acid triggers reactive oxygen species-mediated cytotoxicity in HepG2 cells. Hum Exp Toxicol. 2019;38(6):694–702.

    Article  CAS  PubMed  Google Scholar 

  24. Thakur RS, Devaraj E. Lagerstroemia speciosa (L.) Pers. triggers oxidative stress mediated apoptosis via intrinsic mitochondrial pathway in HepG2 cells. Environ Toxicol. 2020. https://doi.org/10.1002/tox.22987.

  25. Fan J, Wang P, Wang X, Tang W, Liu C, Wang Y, et al. Induction of mitochondrial dependent apoptosis in human leukemia K562 cells by Meconopsis integrifolia: a species from traditional Tibetan medicine. Molecules. 2015;20(7):11981–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He L, Gao L, Shay C, Lang L, Lv F, Teng Y. Histone deacetylase inhibitors suppress aggressiveness of head and neck squamous cell carcinoma via histone acetylation-independent blockade of the EGFR-Arf1 axis. J Exp Clin Cancer Res. 2019;38(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang M, Zhang J, Yan C, Li X, Zhang J, Ling R. Small molecule HDAC inhibitors: promising agents for breast cancer treatment. Bioorg Chem. 2019;91:103184.

    Article  CAS  PubMed  Google Scholar 

  28. Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20(9):E2241.

    Article  PubMed  CAS  Google Scholar 

  29. Luan Y, Li J, Bernatchez JA, Li R. Kinase and histone deacetylase hybrid inhibitors for cancer therapy. J Med Chem. 2019;62(7):3171–83.

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim N, Buchbinder EI, Granter SR, Rodig SJ, Giobbie-Hurder A, Becerra C, et al. A phase I trial of panobinostat (LBH589) in patients with metastatic melanoma. Cancer Med. 2016;5(11):3041–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duvic M, Dimopoulos M. The safety profile of vorinostat (suberoylanilide hydroxamic acid) in hematologic malignancies: a review of clinical studies. Cancer Treat Rev. 2016;43:58–66.

    Article  CAS  PubMed  Google Scholar 

  32. Eigl BJ, North S, Winquist E, Finch D, Wood L, Sridhar SS, et al. A phase II study of the HDAC inhibitor SB939 in patients with castration resistant prostate cancer: NCIC clinical trials group study IND195. Investig New Drugs. 2015;33(4):969–76.

    Article  CAS  Google Scholar 

  33. Sargazi S, Kooshkaki O, Zavar Reza J, Saravani R, Zarei Jaliani H, Mirinejad S, et al. Mild antagonistic effect of valproic acid in combination with AZD2461 in MCF-7 breast cancer cells. Med J Islam Repub Iran. 2019;33:29.

    PubMed  PubMed Central  Google Scholar 

  34. Rithanya P, Ezhilarasan D. Sodium valproate, a histone deacetylase inhibitor, provokes reactive oxygen species-mediated cytotoxicity in human hepatocellular carcinoma cells. J Gastrointest Cancer. 2020. https://doi.org/10.1007/s12029-020-00370-7.

  35. Ezhilarasan D, Apoorva VS, Ashok Vardhan N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med. 2019;48(2):115–21.

    CAS  PubMed  Google Scholar 

  36. Rohit Singh T, Ezhilarasan D. Ethanolic extract of Lagerstroemia speciosa (L.) Pers., induces apoptosis and cell cycle arrest in HepG2 cells. Nutr Cancer. 2020;72:146–156.

  37. Rivera-Del Valle N, Cheng T, Irwin ME, Donnella H, Singh MM, et al. Combinatorial effects of histone deacetylase inhibitors (HDACi), vorinostat and entinostat, and adaphostin are characterized by distinct redox alterations. Cancer Chemother Pharmacol. 2018;81(3):483–95.

    Article  CAS  PubMed  Google Scholar 

  38. Saha SK, Yin Y, Kim K, Yang GM, Dayem AA, Choi HY, et al. Valproic acid induces endocytosis-mediated doxorubicin internalization and shows synergistic cytotoxic effects in hepatocellular carcinoma cells. Int J Mol Sci. 2017;18(5):E1048.

    Article  PubMed  CAS  Google Scholar 

  39. Wang CK, Yu XD, Li Q, Xie G, Teng Y. Chloroquine and valproic acid combined treatment in vitro has enhanced cytotoxicity in an osteosarcoma cell line. Asian Pac J Cancer Prev. 2013;14(8):4651–4.

    Article  PubMed  Google Scholar 

  40. Koyama M, Izutani Y, Goda AE, Matsui TA, Horinaka M, Tomosugi M, et al. Histone deacetylase inhibitors and 15-deoxy-delta12,14-prostaglandin J2 synergistically induce apoptosis. Clin Cancer Res. 2010;16(8):2320–32.

    Article  CAS  PubMed  Google Scholar 

  41. Sudha A, Srinivasan P, Kanimozhi V, Palanivel K, Kadalmani B. Antiproliferative and apoptosis-induction studies of 5-hydroxy 3′,4′,7-trimethoxyflavone in human breast cancer cells MCF-7: an in vitro and in silico approach. J Recept Signal Transduct Res. 2018;38(3):179–90.

    Article  CAS  PubMed  Google Scholar 

  42. Wasim L, Chopra M. Synergistic anticancer effect of panobinostat and topoisomerase inhibitors through ROS generation and intrinsic apoptotic pathway induction in cervical cancer cells. Cell Oncol (Dordr). 2018;41(2):201–12.

    Article  CAS  Google Scholar 

  43. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603–19.

    Article  CAS  Google Scholar 

  44. Ezhilarasan D. Herbal therapy for cancer. In: Srinivasan P, Shanmugam T, editors. Understanding cancer therapies: CRC Press, Boca Raton; 2018. p. 129–66.

  45. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC. E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:11–22.

    Article  PubMed  Google Scholar 

  46. Liu X, Chu KM. E-cadherin and gastric cancer: cause, consequence, and applications. Biomed Res Int. 2014;2014:637308.

    PubMed  PubMed Central  Google Scholar 

  47. Nagle AM, Levine KM, Tasdemir N, Scott JA, Burlbaugh K, Kehm J, et al. Loss of E-cadherin enhances IGF1-IGF1R pathway activation and sensitizes breast cancers to anti-IGF1R/InsR inhibitors. Clin Cancer Res. 2018;24(20):5165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer. 2017;17(1):813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Petrova YI, Schecterson L, Gumbiner BM. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27(21):3233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Q, Zhou X, Fang Z, Pan Z. Effect of STC2 gene silencing on colorectal cancer cells. Mol Med Rep. 2019;20(2):977–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Singh T, Prasad R, Katiyar SK. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res. 2016;6(6):1287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Vasilatos SN, Katz TA, Oesterreich S, Wan Y, Davidson NE, Huang Y. Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis. 2013;34(6):1196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. West AC, Christiansen AJ, Smyth MJ, Johnstone RW. The combination of histone deacetylase inhibitors with immune-stimulating antibodies has potent anti-cancer effects. Oncoimmunology. 2012;1(3):377–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamanegi K, Kawabe M, Futani H, Nishiura H, Yamada N, Kato-Kogoe N, et al. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells. Int J Oncol. 2015;46(5):1994–2002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Anjan Drug Private Limited, Chennai, Tamil Nadu, India, for providing sodium valproate ED as gratis. Special thanks to Dr. S. Gheena, Department of Oral Pathology, Saveetha Dental College and Hospitals, Chennai, India, for the drug procurement procedures.

Author information

Authors and Affiliations

Authors

Contributions

ED designed study and analyzed the data and corrected the manuscript. BVMA performed research, acquired the data, and wrote the manuscript.

Corresponding author

Correspondence to Devaraj Ezhilarasan.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anirudh, B.V.M., Ezhilarasan, D. Reactive Oxygen Species–Mediated Mitochondrial Dysfunction Triggers Sodium Valproate–Induced Cytotoxicity in Human Colorectal Adenocarcinoma Cells. J Gastrointest Canc 52, 899–906 (2021). https://doi.org/10.1007/s12029-020-00505-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00505-w

Keywords

Navigation