Skip to main content

Advertisement

Log in

Integrating Multimodal and Longitudinal Neuroimaging Data with Multi-Source Network Representation Learning

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Uncovering the complex network of the brain is of great interest to the field of neuroimaging. Mining from these rich datasets, scientists try to unveil the fundamental biological mechanisms in the human brain. However, neuroimaging data collected for constructing brain networks is generally costly, and thus extracting useful information from a limited sample size of brain networks is demanding. Currently, there are two common trends in neuroimaging data collection that could be exploited to gain more information: 1) multimodal data, and 2) longitudinal data. It has been shown that these two types of data provide complementary information. Nonetheless, it is challenging to learn brain network representations that can simultaneously capture network properties from multimodal as well as longitudinal datasets. Here we propose a general fusion framework for multi-source learning of brain networks – multimodal brain network fusion with longitudinal coupling (MMLC). In our framework, three layers of information are considered, including cross-sectional similarity, multimodal coupling, and longitudinal consistency. Specifically, we jointly factorize multimodal networks and construct a rotation-based constraint to couple network variance across time. We also adopt the consensus factorization as the group consistent pattern. Using two publicly available brain imaging datasets, we demonstrate that MMLC may better predict psychometric scores than some other state-of-the-art brain network representation learning algorithms. Additionally, the discovered significant brain regions are synergistic with previous literature. Our new approach may boost statistical power and sheds new light on neuroimaging network biomarkers for future psychometric prediction research by integrating longitudinal and multimodal neuroimaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used in this study are all from Southwest University Longitudinal Imaging Multimodal Brain Data Repository (SLIM) (http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html). The algorithm implementation source code is publicly available at http://gsl.lab.asu.edu/software/multimodal-longitudinal-brain-network-coupling.

References

  • Abdelnour, F., Voss, H.U., & Raj, A. (2014). Network diffusion accurately models the relationship between structural and functional brain connectivity networks. NeuroImage, 90, 335–347.

    Article  PubMed  Google Scholar 

  • Absil, P.A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix manifolds. Princeton: Princeton University Press.

    Google Scholar 

  • Balconi, M., & Ferrari, C. (2013). Repeated transcranial magnetic stimulation on dorsolateral prefrontal cortex improves performance in emotional memory retrieval as a function of level of anxiety and stimulus valence. Psychiatry and Clinical Neurosciences, 67(4), 210–218.

    Article  PubMed  Google Scholar 

  • Bassett, D.S., & Sporns, O. (2017). Network neuroscience. Nature Neuroscience, 20(3), 353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutsidis, C., & Gallopoulos, E. (2008). Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recognition, 41(4), 1350–1362.

    Article  Google Scholar 

  • Cao, B., He, L., Wei, X., Xing, M., Yu, P.S., & Klumpp, H. (2017). Leow, A.D.: t-BNE: Tensor-based brain network embedding. In SIAM International conference on data mining: SIAM.

  • Cao, B., Kong, X., Zhang, J., Yu, P.S., & Ragin, A.B. (2015). Mining brain networks using multiple side views for neurological disorder identification. In Proceedings of IEEE International Conference on Data Mining (ICDM).

  • Chang, C.C., & Lin, C.J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

    Google Scholar 

  • Chen, H., Li, K., Zhu, D., Jiang, X., Yuan, Y., Lv, P., Zhang, T., Guo, L., Shen, D., & Liu, T. (2013). Inferring group-wise consistent multimodal brain networks via multi-view spectral clustering. IEEE Transactions on Medical Imaging, 32(9), 1576– 1586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung, M.K. (2019). Brain network analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cun, L., Wang, Y., Zhang, S., Wei, D., & Qiu, J. (2014). The contribution of regional gray/white matter volume in preclinical depression assessed by the Automatic Thoughts Questionnaire: a voxel-based morphometry study. Neuroreport, 25(13), 1030–1037.

    Article  PubMed  Google Scholar 

  • Deco, G., McIntosh, A.R., Shen, K., Hutchison, R.M., Menon, R.S., Everling, S., Hagmann, P., & Jirsa, V.K. (2014). Identification of optimal structural connectivity using functional connectivity and neural modeling. Journal of Neuroscience, 34(23), 7910– 7916.

    Article  CAS  PubMed  Google Scholar 

  • Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P., & Corbetta, M. (2013). Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience, 33(27), 11239– 11252.

    Article  CAS  PubMed  Google Scholar 

  • Dodero, L., Gozzi, A., Liska, A., Murino, V., & Sona, D. (2014). Group-wise functional community detection through joint laplacian diagonalization, MICCAI (2), Pp. 708–715.

  • Donzuso, G., Cerasa, A., Gioia, M.C., Caracciolo, M., & Quattrone, A. (2014). The neuroanatomical correlates of anxiety in a healthy population: differences between the state-Trait Anxiety Inventory and the Hamilton Anxiety Rating Scale. Brain Behav, 4(4), 504–514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, X., Luo, W., Shen, Y., Wei, D., Xie, P., Zhang, J., Zhang, Q., & Qiu, J. (2015). Brain structure associated with automatic thoughts predicted depression symptoms in healthy individuals. Psychiatry Research, 232(3), 257–263.

    Article  PubMed  Google Scholar 

  • Eldén, L. (2007). Matrix methods in data mining and pattern recognition. SIAM.

  • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A.R., Fox, P.T., Eickhoff, S.B., Yu, C., & Jiang, T. (2016). The human brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giedd, J.N., & Rapoport, J.L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron, 67(5), 728–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleason, C.E., Schmitz, T.W., Hess, T., Koscik, R.L., Trivedi, M.A., Ries, M.L., Carlsson, C.M., Sager, M.A., Asthana, S., & Johnson, S.C. (2006). Hormone effects on fmRI and cognitive measures of encoding: importance of hormone preparation. Neurology, 67(11), 2039–2041.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, M.D., Flores, B.H., Menon, V., Glover, G.H., Solvason, H.B., Kenna, H., Reiss, A.L., & Schatzberg, A.F. (2007). Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, W., Liu, F., Xiao, C., Zhang, Z., Liu, J., Yu, M., Zhang, J., & Zhao, J. (2015). Decreased insular connectivity in drug-naive major depressive disorder at rest. Journal of Affective Disorders, 179, 31–37.

    Article  PubMed  Google Scholar 

  • Hao, X., Xu, D., Bansal, R., Dong, Z., Liu, J., Wang, Z., Kangarlu, A., Liu, F., Duan, Y., Shova, S., Gerber, A.J., & Peterson, B.S. (2013). Multimodal magnetic resonance imaging: The coordinated use of multiple, mutually informative probes to understand brain structure and function. Human Brain Mapping, 34(2), 253–271.

    Article  PubMed  Google Scholar 

  • Hecht, D. (2010). Depression and the hyperactive right-hemisphere. Neuroscience Research, 68 (2), 77–87.

    Article  PubMed  Google Scholar 

  • Hedberg, A.G. (1972). Review of state-trait anxiety inventory. Professional Psychology, 3(4), 389–390.

    Article  Google Scholar 

  • Hermundstad, A.M., Brown, K.S., Bassett, D.S., Aminoff, E.M., Frithsen, A., Johnson, A., Tipper, C.M., Miller, M.B., Grafton, S.T., & Carlson, J.M. (2014). Structurally-constrained relationships between cognitive states in the human brain. PLos Computational Biology, 10(5), e1003591.

    Article  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel, M.P., Mandl, R.C., Kahn, R.S., & Hulshoff Pol, H.E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.

    Article  Google Scholar 

  • Hollon, S.D., & Kendall, P.C. (1980). Cognitive self-statements in depression: Development of an automatic thoughts questionnaire. Cognitive Therapy and Research, 4(4), 383–395. https://doi.org/10.1007/BF01178214.

    Article  Google Scholar 

  • Honey, C.J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104(24), 10240–10245.

    Article  CAS  Google Scholar 

  • Horn, A., Ostwald, D., Reisert, M., & Blankenburg, F. (2014). The structural–functional connectome and the default mode network of the human brain. NeuroImage, 102, 142–151.

    Article  PubMed  Google Scholar 

  • Hwang, S.J., Adluru, N., Collins, M.D., Ravi, S.N., Bendlin, B.B., Johnson, S.C., & Singh, V. (2016). Coupled harmonic bases for longitudinal characterization of brain networks. In Proc IEEE comput soc conf comput vis pattern recognit (pp. 2517–2525).

  • Hwang, S.J., Collins, M.D., Ravi, S.N., Ithapu, V.K., Adluru, N., Johnson, S.C., & Singh, V. (2015). A projection free method for generalized eigenvalue problem with a nonsmooth regularizer. In Proc IEEE int conf comput vis (pp. 1841–1849).

  • Ironside, M., Browning, M., Ansari, T.L., Harvey, C.J., Sekyi-Djan, M.N., Bishop, S.J., Harmer, C.J., & O’Shea, J. (2018). Effect of prefrontal cortex stimulation on regulation of amygdala response to threat in individuals with trait anxiety: a randomized clinical trial. JAMA Psychiatry.

  • Isobe, M., Miyata, J., Hazama, M., Fukuyama, H., Murai, T., & Takahashi, H. (2016). Multimodal neuroimaging as a window into the pathological physiology of schizophrenia: Current trends and issues. Neuroscience Research, 102, 29–38.

    Article  PubMed  Google Scholar 

  • Jacobson, S., Kelleher, I., Harley, M., Murtagh, A., Clarke, M., Blanchard, M., Connolly, C., O’Hanlon, E., Garavan, H., & Cannon, M. (2010). Structural and functional brain correlates of subclinical psychotic symptoms in 11-13 year old schoolchildren. NeuroImage, 49(2), 1875–1885.

    Article  PubMed  Google Scholar 

  • Khundrakpam, B.S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z., Das, S., Evans, A.C., Ball, W.S., Byars, A.W., Schapiro, M., Bommer, W., Carr, A., German, A., Dunn, S., Rivkin, M.J., Waber, D., Mulkern, R., Vajapeyam, S., Chiverton, A., Davis, P., Koo, J., Marmor, J., Mrakotsky, C., Robertson, R., McAnulty, G., Brandt, M.E., Fletcher, J.M., Kramer, L.A., Yang, G., McCormack, C., Hebert, K.M., Volero, H., Botteron, K., McKinstry, R.C., Warren, W., Nishino, T., Robert Almli, C., Todd, R., Constantino, J., McCracken, J.T., Levitt, J., Alger, J., O’Neil, J., Toga, A., Asarnow, R., Fadale, D., Heinichen, L., Ireland, C., Wang, D.J., Moss, E., Zimmerman, R.A., Bintliff, B., Bradford, R., Newman, J., Evans, A.C., Arnaoutelis, R., Bruce Pike, G., Louis Collins, D., Leonard, G., Paus, T., Zijdenbos, A., Das, S., Fonov, V., Fu, L., Harlap, J., Leppert, I., Milovan, D., Vins, D., Zeffiro, T., Van Meter, J., Lange, N., Froimowitz, M.P., Botteron, K., Robert Almli, C., Rainey, C., Henderson, S., Nishino, T., Warren, W., Edwards, J.L., Dubois, D., Smith, K., Singer, T., Wilber, A.A., Pierpaoli, C., Basser, P.J., Chang, L.C., Koay, C.G., Walker, L., Freund, L., Rumsey, J., Baskir, L., Stanford, L., Sirocco, K., Gwinn-Hardy, K., Spinella, G., McCracken, J.T., Alger, J.R., Levitt, J., & O’Neill, J. (2013). Developmental changes in organization of structural brain networks. Cerebral Cortex, 23(9), 2072–2085.

    Article  PubMed  Google Scholar 

  • Knight, L.K., Stoica, T., Fogleman, N.D., & Depue, B.E. (2019). Convergent neural correlates of empathy and anxiety during socioemotional processing. Frontiers in Human Neuroscience, 13, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, X., & Yu, P.S. (2014). Brain network analysis: a data mining perspective. ACM SIGKDD Explorations Newsletter, 15(2), 30–38.

    Article  Google Scholar 

  • Koseki, S., Noda, T., Yokoyama, S., Kunisato, Y., Ito, D., Suyama, H., Matsuda, T., Sugimura, Y., Ishihara, N., Shimizu, Y., Nakazawa, K., Yoshida, S., Arima, K., & Suzuki, S. (2013). The relationship between positive and negative automatic thought and activity in the prefrontal and temporal cortices: a multi-channel near-infrared spectroscopy (nIRS) study. Journal of Affective Disorders, 151(1), 352–359.

    Article  PubMed  Google Scholar 

  • Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., & Marra, M.A. (2009). Circos: an information aesthetic for comparative genomics. Genome Research, 19(9), 1639–1645. 10.1101/gr.092759.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, E.I., Ressler, K.J., Binder, E., & Nemeroff, C.B. (2010). The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Clinics in Laboratory Medicine, 30(4), 865–891.

    Article  PubMed  Google Scholar 

  • McIntosh, A.R., & Lobaugh, N.J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23, S250–S263.

    Article  PubMed  Google Scholar 

  • Meier, J., Tewarie, P., Hillebrand, A., Douw, L., van Dijk, B.W., Stufflebeam, S.M., & Van Mieghem, P. (2016). A mapping between structural and functional brain networks. Brain Connect, 6(4), 298–311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesulam, M. (2000). Brain, mind, and the evolution of connectivity. Brain and Cognition, 42 (1), 4–6.

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo, J.J. (2013). Brain structural and functional changes in adolescents with psychiatric disorders. International Journal of Adolescent Medicine and Health, 25(3), 245–256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng, B., Varoquaux, G., Poline, J.B., & Thirion, B. (2012). A novel sparse graphical approach for multimodal brain connectivity inference. In MICCAI (pp. 707–714).

  • Nie, J., Li, G., & Shen, D. (2013). Development of cortical anatomical properties from early childhood to early adulthood. NeuroImage, 76, 216–224.

    Article  PubMed  Google Scholar 

  • Osmanlıoġlu, Y., Tunċ, B., Parker, D., Elliott, M.A., Baum, G.L., Ciric, R., Satterthwaite, T.D., Gur, R.E., Gur, R.C., & Verma, R. (2019). System-level matching of structural and functional connectomes in the human brain. NeuroImage, 199, 93–104.

    Article  PubMed  Google Scholar 

  • Paquette, V., Beauregard, M., & Beaulieu-Prevost, D. (2009). Effect of a psychoneurotherapy on brain electromagnetic tomography in individuals with major depressive disorder. Psychiatry Research, 174 (3), 231–239.

    Article  PubMed  Google Scholar 

  • Park, H.J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342(6158), 1238411.

    Article  PubMed  Google Scholar 

  • Pompili, F., Gillis, N., Absil, P.A., & Glineur, F. (2014). Two algorithms for orthogonal nonnegative matrix factorization with application to clustering. Neurocomputing, 141, 15–25.

    Article  Google Scholar 

  • Revest, J.M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P.V., & Abrous, D.N. (2009). Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Molecular Psychiatry, 14(10), 959–967.

    Article  PubMed  Google Scholar 

  • Rusch, B.D., Abercrombie, H.C., Oakes, T.R., Schaefer, S.M., & Davidson, R.J. (2001). Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms. Biological Psychiatry, 50(12), 960–964.

    Article  CAS  PubMed  Google Scholar 

  • Shen, K., Bezgin, G., Hutchison, R.M., Gati, J.S., Menon, R.S., Everling, S., & McIntosh, A.R. (2012). Information processing architecture of functionally defined clusters in the macaque cortex. Journal of Neuroscience, 32(48), 17465–17476.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, L.E., Rudie, J.D., Pfeifer, J.H., Masten, C.L., McNealy, K., & Dapretto, M. (2014). Development of the default mode and central executive networks across early adolescence: a longitudinal study. Developmental Cognitive Neuroscience, 10, 148–159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, A.P., & Gordon, G.J. (2008). Relational learning via collective matrix factorization. In SIGKDD (pp. 650–658): ACM.

  • Skudlarski, P., Jagannathan, K., Calhoun, V.D., Hampson, M., Skudlarska, B.A., & Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage, 43(3), 554–561.

    Article  PubMed  Google Scholar 

  • Sporns, O. (2013). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience, 15(3), 247.

    PubMed  PubMed Central  Google Scholar 

  • Staempfli, P., Reischauer, C., Jaermann, T., Valavanis, A., Kollias, S., & Boesiger, P. (2008). Combining fMRI and DTI: a framework for exploring the limits of fMRI-guided DTI fiber tracking and for verifying DTI-based fiber tractography results. NeuroImage, 39(1), 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Stam, C., Van Straaten, E., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J., & Van Mieghem, P. (2016). The relation between structural and functional connectivity patterns in complex brain networks. International Journal of Psychophysiology, 103, 149–160.

    Article  CAS  PubMed  Google Scholar 

  • Strasser, A., Xin, L., Gruetter, R., & Sandi, C. (2019). Nucleus accumbens neurochemistry in human anxiety: A 7 T 1h-MRS study. European Neuropsychopharmacology, 29(3), 365– 375.

    Article  CAS  PubMed  Google Scholar 

  • Sui, J., Huster, R., Yu, Q., Segall, J.M., & Calhoun, V.D. (2014). Function-structure associations of the brain: evidence from multimodal connectivity and covariance studies. Neuroimage 102 Pt, 1, 11–23.

    Article  Google Scholar 

  • Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M.D. (2008). Network analysis of intrinsic functional brain connectivity in alzheimer’s disease. PLos Computational Biology, 4(6), e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tadayonnejad, R., & Ajilore, O. (2014). Brain network dysfunction in late-life depression: a literature review. Journal of Geriatric Psychiatry and Neurology, 27(1), 5–12.

    Article  PubMed  Google Scholar 

  • Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.F., & Golland, P. (2012). Joint modeling of anatomical and functional connectivity for population studies. IEEE Transactions on Medical Imaging, 31(2), 164–182.

    Article  PubMed  Google Scholar 

  • Wang, C., Ng, B., & Abugharbieh, R. (2017). Multimodal brain subnetwork extraction using provincial hub guided random walks. In International conference on information processing in medical imaging (pp. 287–298): Springer.

  • Wen, Z., & Yin, W. (2013). A feasible method for optimization with orthogonality constraints. Mathematical Programming, 142(1-2), 397–434.

    Article  Google Scholar 

  • Wu, J.C., Buchsbaum, M.S., Hershey, T.G., Hazlett, E., Sicotte, N., & Johnson, J.C. (1991). PeT in generalized anxiety disorder. Biological Psychiatry, 29(12), 1181–1199.

    Article  CAS  PubMed  Google Scholar 

  • Wu, X., Lin, P., Yang, J., Song, H., Yang, R., & Yang, J. (2016). Dysfunction of the cingulo-opercular network in first-episode medication-naive patients with major depressive disorder. Journal of Affective Disorders, 200, 275–283.

    Article  PubMed  Google Scholar 

  • Young, K.A., Holcomb, L.A., Yazdani, U., Hicks, P.B., & German, D.C. (2004). Elevated neuron number in the limbic thalamus in major depression. The American Journal of Psychiatry, 161(7), 1270–1277.

    Article  PubMed  Google Scholar 

  • Zhang, W., Wang, J., Fan, L., Zhang, Y., Fox, P.T., Eickhoff, S.B., Yu, C., & Jiang, T. (2016). Functional organization of the fusiform gyrus revealed with connectivity profiles. Human Brain Mapping, 37(8), 3003–3016.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Institutes of Health (R21AG065942, R21AG049216, RF1AG051710, R01EB025032, and K01MH116098), and the Arizona Alzheimer’s Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present the formulation of iterative optimization to obtain the local optimal solution. Basically, for the five learning parameters, i.e. \(V^{f*}_{j}\), \(V^{d*}_{j}\), \(U_{i,j}, V^{f}_{i,j}\) and \(V^{d}_{i,j}\), each update step learns one of them by fixing the rest. The algorithm details are described in Algorithm 1.

Fixing \(V^{f*}_{j}\) and \(V^{d*}_{j}\), minimize L over \(U_{i,j}, V^{f}_{i,j}\) and \(V^{d}_{i,j}\) Under the defined condition, objective function L only depends on \(U_{i,j}, V^{f}_{i,j}, V^{d}_{i,j}\). For brevity in this subsection, we use U, Vf, Vd, Vf and Vd to represent \(U_{i,j}, V^{f}_{i,j}, V^{d}_{i,j}, V^{f*}_{j}\) and \(V^{d*}_{j}\). Therefore, the new objective function can be simplified as:

$$ \begin{array}{ll} L_{1}= & \parallel{X^{f}-U(V^{f})^{T}}{\parallel^{2}_{F}}+\alpha\parallel{X^{d}-U(V^{d})^{T}}{\parallel^{2}_{F}} \\ &+\lambda_{1}\parallel V^{f}-V^{f*}{\parallel^{2}_{F}} +\lambda_{1}\parallel V^{d}-V^{d*}{\parallel^{2}_{F}}+\lambda_{2}G. \end{array} $$
(12)

First, we further fix Vf and Vd to update U. For a given subject i and time point j, we could take the derivative of L1 with respect to U.

$$ \begin{array}{@{}rcl@{}} \frac{\partial L_{1}}{\partial U}&=&2(U(V^{f})^{T}V^{f}-X^{f}V^{f})+2\alpha\left( U(V^{d})^{T}V^{d}\right. \\ &&\left.\left.-X^{d}V^{d}\right)\right)+\lambda_{2}G^{\prime}(U). \end{array} $$
(13)

Here, \(G^{\prime }(U)\) is the derivative of U with respect to U. Given a step size l, we update U as \(U_{new}=U_{pre}-l*\frac {\partial L_{1}}{\partial U_{pre}}\). Then, we fix Vd and U to update Vf. The objective function in functional network part is related to Vf, thus the gradient of L1 with respect to Vf is:

$$ \frac{\partial L_{1}}{\partial V^{f}} = 2(V^{f}(U)^{T}U-X^{f}U) +2\lambda_{1}(V^{f}-V^{f*})+\lambda_{2}G^{\prime}(V^{f}). $$
(14)

Similarly, we update Vd with the same procedure as Vf,

$$ \frac{\partial L_{1}}{\partial V^{d}} = 2\alpha(V^{d}(U)^{T}U-X^{d}U) +2\lambda_{1}(V^{d}-V^{d*})+\lambda_{2}G^{\prime}(V^{d}). $$
(15)

Fixing \(U_{i,j}, V^{f}_{i,j}\) and \(V^{d}_{i,j}\), minimize L over \(V^{f*}_{j}\) and \(V^{d*}_{j}\) For brevity in this subsection, we use \({V^{f}_{i}}, {V^{d}_{i}}, V^{f*}\) and Vd to represent \(V^{f}_{i,j}, V^{d}_{i,j}, V^{f*}_{j}\) and \(V^{d*}_{j}\). We observe that for each time j, the framework will generate a group-wise \(V^{f*}_{j}\) and \(V^{d*}_{j}\). Therefore we can reorganize the objective function L to make it only relate to those two parameters, as below:

$$ L_{2}=\lambda_{1}\sum\limits_{i=1}^{N}\parallel {V^{f}_{i}}-V^{f*}{\parallel^{2}_{F}}+\parallel {V^{d}_{i}}-V^{d*}{\parallel^{2}_{F}} +\lambda_{2}G(V^{f*},V^{d*}). $$
(16)

After updating all individual Ui, \({V^{f}_{i}}\) and \({V^{d}_{i}}\), we could take the derivative of L2 with respect to Vf.

$$ \begin{array}{ll} \frac{\partial L_{2}}{\partial V^{f*}}=2\lambda_{1}{\sum}_{i=1}^{N}(V^{f*}-{V^{f}_{i}})+\lambda_{2}G^{\prime}(V^{f*}). \end{array} $$
(17)

For Vd, an equality constraint (Vd)TMVd = I will regulate the gradient direction of L2 with respect to Vd, which makes the solution difficult. Instead of directly finding an optimal direction with gradient descent on the surface described by original objective function, we construct the descent curves on the constraint-based Stiefel manifold (Hwang et al. 2016). Specifically, Vd will be divided into two submatrixes \(V^{d*}=[V^{d*}_{1};V^{d*}_{2}]\), where \(V^{d*}_{1}\in \mathbb {R}^{s\times p}\) is the free variable to be solved and \(V^{d*}_{2}\in \mathbb {R}^{(n-s)\times p}\) is the fixed variable treated as constants. Then we rearrange the constraint as:

$$ \begin{bmatrix} V^{d*}_{1}\\ V^{d*}_{2} \end{bmatrix}^{T}\begin{bmatrix} M_{11} &M_{12}\\ M_{12}^{T} &M_{22} \end{bmatrix}\begin{bmatrix} V^{d*}_{1}\\ V^{d*}_{2} \end{bmatrix}=I. $$
(18)

It is easy to conclude that M11 is a full rank positive definite matrix. Then a descent curve based on the previous Vd will be constructed and it starts at the point \(P_{s}=V^{d*}_{1}+M_{11}^{-\frac {1}{2}}M_{12}V^{d*}_{2}\) which is the initial point for the line search on the generalized Stiefel manifold. Given the descending gradient \(-L_{2}^{\prime }(P)=-\frac {\partial L_{2}}{\partial V^{d*}}\circ \frac {\partial V^{d*}}{\partial P}\) at point P, we further project \(-L_{2}^{\prime }(P)\) onto the tangent space of the Stiefel manifold by constructing a skew-symmetric matrix:

$$ A=L_{2}^{\prime}(P){P_{s}^{T}}-P_{s}L_{2}^{\prime}(P)^{T}. $$
(19)

This will lead to a curve function Y (τ) by the Crank-Nicolson-like design as in the paper (Wen and Yin 2013).

$$ Y(\tau)=(I+\frac{\tau}{2}AM_{11})^{-1}(I-\frac{\tau}{2}AM_{11})P_{s}. $$
(20)

The above function gives a linear search procedure of updating point P by Pnew = Y (τ) for small τ which results sufficient decrease in L2. Finally, the next feasible \(V^{d*}_{new}\) will be given as:

$$ V^{d*}_{new}(P)= \begin{bmatrix} P-M_{11}^{-\frac{1}{2}}M_{12}V^{d*}_{2}\\ V^{d*}_{2} \end{bmatrix}. $$
(21)

Optimization of the variant models. In this study, different variants of the model are studied to test how each coupling term affects the outcome of the learning tasks. Their MP parameters, e.g., dimension P, are deliberately set to be the same as the proposed model MMLC. We find relatively similar patterns of MFCSMC and MFCSLC that both of them have a close performance to MMLC with larger P values, i.e., in high dimensional feature space. As we discussed in Section 4, the proposed MMLC enjoys better computational efficiency for high dimensional feature space. Meanwhile, sMFLC yields a relatively stable pattern as EigLC, which has no significant improvements by increasing P beyond 10. It is partially because the knowledge solely comes from the structural modality containing sparse connections. For the purpose of replicating our investigation, we provide the details on how to optimize these comparison algorithm as follows. Specifically, to optimize MFCSMC, in A, we skip steps in line 11-19 and update \({V_{j}^{d}}*\) as \({V_{j}^{f}}*\) in line 9. To optimize sMFLC, we skip steps in line 5,6,9 to avoid updates of \(U_{i,j}^{f}\), \(V_{i,j}^{f}\) and \({V_{j}^{f}}*\). As for MFCSLC, we update \(U_{i,j}^{f}\) and \(U_{i,j}^{d}\) independently but keep the rest of A. For all algorithms, Their learning rates are all set as 1e − 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Braden, B.B., Miranda, G. et al. Integrating Multimodal and Longitudinal Neuroimaging Data with Multi-Source Network Representation Learning. Neuroinform 20, 301–316 (2022). https://doi.org/10.1007/s12021-021-09523-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-021-09523-w

Keywords

Navigation