Skip to main content
Log in

Pituitary-adrenal axis and peripheral cortisol metabolism in obese patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background and aim

A close relationship between adiposity and increased cortisol levels is well established in patients with endogenous hypercortisolism. Nevertheless, hypothalamic-pituitary-adrenal (HPA) axis regulation in overweight subjects is still a matter of concern. We studied free cortisol (urinary free cortisol, UFC and late night salivary cortisol, LNSC), pituitary feedback (serum cortisol after 1 mg dexamethasone suppression test, 1 mg DST) and peripheral cortisol metabolism (urinary cortisol to cortisone ratio, F/Eratio) in a large series of overweight subjects without Cushing’s Syndrome.

Materials and methods

We considered 234 patients divided in 5 BMI classes, matched for age and gender (BMI ≤ 25 kg/m2n = 38; 25–30 n = 58; 30–35 n = 52; 35–40 n = 52; >40 n = 34). UFC, LNSC and urinary F/Eratio were assessed with LC-MS.

Results

We collected 183 LNSC, 176 UFC, 152 1 mg DST and 64 F/Eratio tests. UFC levels were higher in lean subjects, and they decreased according to the BMI classes (p = 0.022). Non-suppressed cortisol levels (>50 nmol/L) after 1 mg DST were observed especially in patients with normal weight or mild obesity. Patients with BMI ≥ 35 kg/m2 revealed a reduced F/Eratio (0.39 vs. 0.61, p = 0.006). The specificity of tests (false positive results) was higher considering 1 mg DST or UFC in obese patients, on the contrary impaired cortisol rhythm (LNSC above normality) was observed in 47 subjects, irrespective of weight.

Conclusions

Overweight and obese subjects are characterised by an original regulation of HPA axis (reduced UFC levels, increased suppression after 1 mg DST) and peripheral cortisol metabolism (reduced F/Eratio), suggesting an effort to counteract hypercortisolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available on request due to local (academic) restrictions.

References

  1. A.C. Incollingo Rodriguez, E.S. Epel, M.L. White, E.C. Standen, J.R. Seckl, A.J. Tomiyama, Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocrinology. 62, 301–318 (2015). https://doi.org/10.1016/j.psyneuen.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  2. L. Plat, R. Leproult, M. L’Hermite-Baleriaux et al. Metabolic effects of short-term elevations of plasma cortisol are more pronounced in the evening than in the morning 1. J. Clin. Endocrino.l Metab. 84(9), 3082–3092 (1999). https://doi.org/10.1210/jcem.84.9.5978

    Article  CAS  Google Scholar 

  3. M. Boscaro, G. Arnaldi, Approach to the patient with possible cushing’s syndrome. J. Clin. Endocrinol. Metab. 94(9), 3121–3131 (2009). https://doi.org/10.1210/jc.2009-0612

    Article  CAS  PubMed  Google Scholar 

  4. F. Ceccato, M. Boccato, M. Zilio et al. Body composition is different after surgical or pharmacological remission of cushing’s syndrome: a prospective DXA study. Horm. Metab. Res. 49(9) (2017). https://doi.org/10.1055/s-0043-115008

  5. K.I. Alexandraki, A.B. Grossman, Is urinary free cortisol of value in the diagnosis of Cushing’s syndrome? Curr. Opin. Endocrinol. Diabetes Obes. 18(4), 259–263 (2011). https://doi.org/10.1097/MED.0b013e3283487193

    Article  CAS  PubMed  Google Scholar 

  6. M.B. Elamin, M.H. Murad, R. Mullan et al. Accuracy of diagnostic tests for cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93(5), 1553–1562 (2008). https://doi.org/10.1210/jc.2008-0139

    Article  CAS  PubMed  Google Scholar 

  7. F. Ceccato, M. Barbot, M. Zilio et al. Screening tests for cushing’s syndrome: urinary free cortisol role measured by LC-MS/MS. J. Clin. Endocrinol. Metab. 100(10) (2015). https://doi.org/10.1210/jc.2015-2507

  8. P.M. Stewart, A. Boulton, S. Kumar, P.M.S. Clark, C.H.L. Shackleton, Cortisol metabolism in human obesity: impaired cortisone→cortisol conversion in subjects with central adiposity 1. J. Clin. Endocrinol. Metab. 84(3), 1022–1027 (1999). https://doi.org/10.1210/jcem.84.3.5538

    Article  CAS  PubMed  Google Scholar 

  9. E. Rask, T. Olsson, S. Söderberg et al. Tissue-specific dysregulation of cortisol metabolism in human obesity. J. Clin. Endocrinol. Metab. 86(3), 1418–1421 (2001). https://doi.org/10.1210/jcem.86.3.7453

    Article  CAS  PubMed  Google Scholar 

  10. E. Rask, B.R. Walker, S. Söderberg et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J. Clin. Endocrinol. Metab. 87(7), 3330–3336 (2002). https://doi.org/10.1210/jcem.87.7.8661

    Article  CAS  PubMed  Google Scholar 

  11. V. Vicennati, R. Pasquali, Abnormalities of the hypothalamic-pituitary-adrenal axis in nondepressed women with abdominal obesity and relations with insulin resistance: evidence for a central and a peripheral alteration. J. Clin. Endocrinol. Metab. 85(11), 4093–4098 (2000). https://doi.org/10.1210/jcem.85.11.6946

    Article  CAS  PubMed  Google Scholar 

  12. L.K. Nieman, B.M.K. Biller, J.W. Findling et al. The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93(5), 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Fassnacht, W. Arlt, I. Bancos et al. Management of adrenal incidentalomas: european society of endocrinology clinical practice guideline in collaboration with the european network for the study of adrenal tumors. Eur. J. Endocrinol. 175(2), G34 (2016). https://doi.org/10.1530/EJE-16-0467

    Article  Google Scholar 

  14. T. Ljung, M. Ottosson, A.C. Ahlberg et al. Central and peripheral glucocorticoid receptor function in abdominal obesity. J Endocrinol. Investig. 25(3), 229–235 (2002). https://doi.org/10.1007/BF03343995

    Article  CAS  Google Scholar 

  15. R. Pasquali, B. Ambrosi, D. Armanini et al. Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution, and dexamethasone concentrations: a dose-response study. J. Clin. Endocrinol. Metab. 87(1), 166–175 (2002). https://doi.org/10.1210/jcem.87.1.8158

    Article  CAS  PubMed  Google Scholar 

  16. H. Raff, Cushing’s syndrome: diagnosis and surveillance using salivary cortisol. Pituitary. 15(1), 64–70 (2012). https://doi.org/10.1007/s11102-011-0333-0

    Article  PubMed  Google Scholar 

  17. T. Deutschbein, M. Broecker-Preuss, J. Flitsch et al. Salivary cortisol as a diagnostic tool for Cushing’s syndrome and adrenal insufficiency: improved screening by an automatic immunoassay. Eur. J. Endocrinol. 166(4), 613 (2012). https://doi.org/10.1530/EJE-11-0945

    Article  CAS  PubMed  Google Scholar 

  18. G. Antonelli, F. Ceccato, C. Artusi, M. Marinova, M. Plebani, Salivary cortisol and cortisone by LC-MS/MS: validation, reference intervals and diagnostic accuracy in Cushing’s syndrome. Clin. Chim. Acta. 451 (2015). https://doi.org/10.1016/j.cca.2015.10.004

  19. S.B. Abraham, D. Rubino, N. Sinaii, S. Ramsey, L.K. Nieman, Cortisol, obesity, and the metabolic syndrome: a cross-sectional study of obese subjects and review of the literature. Obesity. 21(1), E105–E117 (2013). https://doi.org/10.1002/oby.20083

    Article  CAS  PubMed  Google Scholar 

  20. F. Ceccato, M. Barbot, M. Zilio et al. Age and the metabolic syndrome affect salivary cortisol rhythm: data from a community sample. Hormones. 14(3) (2015). https://doi.org/10.14310/horm.2002.1591

  21. F. Ceccato, G. Marcelli, M. Martino et al. The diagnostic accuracy of increased late night salivary cortisol for Cushing’s syndrome: a real-life prospective study. J. Endocrinol. Investig. 1–9 (2018). https://doi.org/10.1007/s40618-018-0921-1

  22. B. MARINIELLO, V. RONCONI, C. SARDU et al. Analysis of the 11β-Hydroxysteroid Dehydrogenase Type 2 Gene (HSD11B2) in human essential hypertension. Am. J. Hypertens. 18(8), 1091–1098 (2005). https://doi.org/10.1016/j.amjhyper.2005.02.020

    Article  CAS  PubMed  Google Scholar 

  23. P. Limumpornpetch, P. M. Stewart. Apparent Mineralocorticoid Excess. In: I Huhtaniemi, (ed.) Encyclopedia of Endocrine Diseases. 3, Academic Press, Elsevier; 638–643 (2018). https://doi.org/10.1016/B978-0-12-801238-3.64338-6. https://www.elsevier.com/books/encyclopedia-of-endocrine-diseases/huhtaniemi/978-0-12-812199-3

  24. R. Pasquali, V. Vicennati, M. Cacciari, U. Pagotto, The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 1083, 111–128 (2006). https://doi.org/10.1196/annals.1367.009

    Article  CAS  PubMed  Google Scholar 

  25. J.W. Findling, H. Raff, O.F. DIAGNOSIS, Endocrine disease: differentiation of pathologic/neoplastic hypercortisolism (Cushing’s syndrome) from physiologic/non-neoplastic hypercortisolism (formerly known as pseudo-Cushing’s syndrome). Eur. J. Endocrinol. 176(5), R205–R216 (2017). https://doi.org/10.1530/EJE-16-0946

    Article  CAS  PubMed  Google Scholar 

  26. C. Scaroni, N.M. Albiger, S. Palmieri et al. Approach to patients with pseudo-Cushing’s states. Endocr. Connect. 9(1), R1–R13 (2020). https://doi.org/10.1530/EC-19-0435

    Article  PubMed  Google Scholar 

  27. World Health Organization. Obesity: preventing and managing the global epidemic report of a WHO consultation (WHO Technical Report Series 894). Geneva, 2000. https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/

  28. F. Ceccato, G. Antonelli, M. Barbot et al. The diagnostic performance of urinary free cortisol is better than the cortisol: cortisone ratio in detecting de novo Cushing’s Syndrome: The use of a LC-MS/MS method in routine clinical practice. Eur. J. Endocrinol. 171(1) (2014). https://doi.org/10.1530/EJE-14-0061

  29. F. Ceccato, M. Barbot, N. Albiger et al. Daily salivary cortisol and cortisone rhythm in patients with adrenal incidentaloma. Endocrine. 2017. https://doi.org/10.1007/s12020-017-1421-3

  30. F. Ceccato, C. Artusi, M. Barbot et al. Dexamethasone measurement during low-dose suppression test for suspected hypercortisolism: threshold development with and validation. J. Endocrinol. Investig. 2020. https://doi.org/10.1007/s40618-020-01197-6

  31. F. Pecori Giraldi, A.G. Ambrogio, M. De Martin, L.M. Fatti, M. Scacchi, F. Cavagnini, Specificity of first-line tests for the diagnosis of cushing’s syndrome: assessment in a large series. J. Clin. Endocrinol. Metab. 92(11), 4123–4129 (2007). https://doi.org/10.1210/jc.2007-0596

    Article  CAS  PubMed  Google Scholar 

  32. S.K. Baid, D. Rubino, N. Sinaii, S. Ramsey, A. Frank, L.K. Nieman, Specificity of screening tests for cushing’s syndrome in an overweight and obese population. J. Clin. Endocrinol. Metab. 94(10), 3857–3864 (2009). https://doi.org/10.1210/jc.2008-2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. A. Drincic, E. Fuller, R.P. Heaney, L.A.G. Armas, 25-Hydroxyvitamin D response to graded vitamin D3 supplementation among obese adults. J. Clin. Endocrinol. Metab. 98(12), 4845–4851 (2013). https://doi.org/10.1210/jc.2012-4103

    Article  CAS  PubMed  Google Scholar 

  34. V. Camozzi, A.C. Frigo, M. Zaninotto et al. 25-Hydroxycholecalciferol response to single oral cholecalciferol loading in the normal weight, overweight, and obese. Osteoporos Int. 27(8), 2593–2602 (2016). https://doi.org/10.1007/s00198-016-3574-y

    Article  CAS  PubMed  Google Scholar 

  35. S. Hepsen, E. Sencar, D. Sakiz et al. Serum cortisol level after low dose dexamethasone suppression test may be predictive for diabetes mellitus and hypertension presence in obese patients: a retrospective study. Diabetes Res. Clin. Pract. 161, 108081 (2020). https://doi.org/10.1016/j.diabres.2020.108081

    Article  CAS  PubMed  Google Scholar 

  36. G.W. Strain, B. Zumoff, J.J. Strain, J. Levin, D.K. Fukushima, Cortisol production in obesity. Metabolism. 29(10), 980–985 (1980). http://www.ncbi.nlm.nih.gov/pubmed/6999293

  37. T.G. Travison, A.B. O’Donnell, A.B. Araujo, A.M. Matsumoto, J.B. McKinlay, Cortisol levels and measures of body composition in middle-aged and older men. Clin. Endocrinol (Oxf). 67(1), 71–77 (2007). https://doi.org/10.1111/j.1365-2265.2007.02837.x

    Article  CAS  PubMed  Google Scholar 

  38. V. Vicennati, S. Garelli, E. Rinaldi, G. Di Dalmazi, U. Pagotto, R. Pasquali, Cross-talk between adipose tissue and the HPA axis in obesity and overt hypercortisolemic states. Horm. Mol. Biol. Clin. Investig. 17(2), 63–77 (2014). https://doi.org/10.1515/hmbci-2013-0068

    Article  CAS  PubMed  Google Scholar 

  39. C.P. Woods, M. Corrigan, L. Gathercole et al. Tissue specific regulation of glucocorticoids in severe obesity and the response to significant weight loss following bariatric surgery (BARICORT). J. Clin. Endocrinol. Metab. 100(4), 1434–1444 (2015). https://doi.org/10.1210/jc.2014-4120

    Article  CAS  PubMed  Google Scholar 

  40. I. Chiodini, A. Gaudio, C. Eller-Vainicher et al. Cortisol secretion, sensitivity, and activity are associated with hypertension in postmenopausal eucortisolemic women. J. Clin. Endocrinol. Metab. 104(10), 4441–4448 (2019). https://doi.org/10.1210/jc.2019-00037

    Article  PubMed  Google Scholar 

  41. S. Champaneri, X. Xu, M.R. Carnethon et al. Diurnal salivary cortisol is associated with body mass index and waist circumference: the multiethnic study of atherosclerosis. Obesity. 21(1), E56–E63 (2013). https://doi.org/10.1002/oby.20047

    Article  CAS  PubMed  Google Scholar 

  42. S. Coelli, C.B. Farias, A.A. Soares et al. Influence of age, gender and body mass index on late-night salivary cortisol in healthy adults. Clin. Chem. Lab. Med. 55(12), 1954–1961 (2017). https://doi.org/10.1515/cclm-2016-1100

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Ceccato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccato, F., Lizzul, L., Barbot, M. et al. Pituitary-adrenal axis and peripheral cortisol metabolism in obese patients. Endocrine 69, 386–392 (2020). https://doi.org/10.1007/s12020-020-02392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02392-4

Keywords

Navigation