Skip to main content

Advertisement

Log in

Blockade of Nav1.8 Currents in Nociceptive Trigeminal Neurons Contributes to Anti-trigeminovascular Nociceptive Effect of Amitriptyline

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Amitriptyline (AMI), a tricyclic antidepressant, has been widely used to prevent migraine attacks and alleviate other various chronic pain, but the underlying mechanism remains unclear. Accumulated evidence suggests that the efficacy of AMI is related to the blockade of voltage-gated sodium channels. The aim of the present study was to investigate the effect of AMI on Nav1.8 currents in nociceptive trigeminal neurons and trigeminovascular nociception induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus (SSS) in rats, as in the animal model of vascular headaches such as migraines. Using a whole-cell voltage recording technique, we showed that Nav1.8 currents were blocked by AMI in a concentration-dependent manner, with an IC50 value of 6.82 μM in acute isolated trigeminal ganglion neurons of the rats. AMI caused a hyperpolarizing shift in the voltage-dependent activation and steady-state inactivation and significantly blocked in a use-dependent manner and slowed the recovery from the inactivation of Nav1.8 currents. In addition, the systemic administration of AMI and A-803467 (a selective Nav1.8 channel blocker) potently alleviated the nociceptive behaviors (head flicks and grooming) induced by the electrical stimulation of the dura mater surrounding the SSS. Taken together, our data suggest that Nav1.8 currents in nociceptive trigeminal neurons are blocked by AMI through modulating the activation and inactivation kinetics, which may contribute to anti-nociceptive effect of AMI in animal models of migraines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguggia, M. (2012). Allodynia and migraine. Neurological Science, 33(Suppl 1), S9–S11.

    Article  Google Scholar 

  • Akopian, A. N., Souslova, V., England, S., Okuse, K., Ogata, N., Ure, J., et al. (1999). The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neuroscience, 2(6), 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Amaya, F., Decosterd, I., Samad, T. A., Plumpton, C., Tate, S., Mannion, R. J., et al. (2000). Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Molecular and Cellular Neuroscience, 15(4), 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Andlin-Sobocki, P., Jonsson, B., Wittchen, H. U., & Olesen, J. (2005). Cost of disorders of the brain in Europe. European Journal of Neurology, 12(Suppl 1), 1–27.

    Article  PubMed  Google Scholar 

  • Antonova, M., Wienecke, T., Olesen, J., & Ashina, M. (2012). Prostaglandin E(2) induces immediate migraine-like attack in migraine patients without aura. Cephalalgia, 32(11), 822–833.

    Article  PubMed  Google Scholar 

  • Arsenault, A., & Sawynok, J. (2009). Perisurgical amitriptyline produces a preventive effect on afferent hypersensitivity following spared nerve injury. Pain, 146(3), 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Atasoy, H. T., Unal, A. E., Atasoy, N., Emre, U., & Sumer, M. (2005). Low income and education levels may cause medication overuse and chronicity in migraine patients. Headache, 45(1), 25–31.

    Article  PubMed  Google Scholar 

  • Ates, O., Kurt, S., Altinisik, J., Karaer, H., & Sezer, S. (2011). Genetic variations in tumor necrosis factor alpha, interleukin-10 genes, and migraine susceptibility. Pain Medicine, 12(10), 1464–1469.

    Article  PubMed  Google Scholar 

  • Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circulation Research, 69(3), 677–696.

    Article  CAS  PubMed  Google Scholar 

  • Bielefeldt, K., Ozaki, N., Whiteis, C., & Gebhart, G. F. (2002). Amitriptyline inhibits voltage-sensitive sodium currents in rat gastric sensory neurons. Digestive Diseases and Sciences, 47(5), 959–966.

    Article  CAS  PubMed  Google Scholar 

  • Blair, N. T., & Bean, B. P. (2002). Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. The Journal of Neuroscience, 22(23), 10277–10290.

    CAS  PubMed  Google Scholar 

  • Bongenhielm, U., Nosrat, C. A., Nosrat, I., Eriksson, J., Fjell, J., & Fried, K. (2000). Expression of sodium channel SNS/PN3 and ankyrin(G) mRNAs in the trigeminal ganglion after inferior alveolar nerve injury in the rat. Experimental Neurology, 164(2), 384–395.

    Article  CAS  PubMed  Google Scholar 

  • Cang, C. L., Zhang, H., Zhang, Y. Q., & Zhao, Z. Q. (2009). PKCepsilon-dependent potentiation of TTX-resistant Nav1.8 current by neurokinin-1 receptor activation in rat dorsal root ganglion neurons. Molecular Pain, 5, 33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, X., Pang, R. P., Shen, K. F., Zimmermann, M., Xin, W. J., Li, Y. Y., et al. (2011). TNF-alpha enhances the currents of voltage gated sodium channels in uninjured dorsal root ganglion neurons following motor nerve injury. Experimental Neurology, 227(2), 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, K. I., Wang, H. C., Chang, L. L., Wang, F. Y., Lai, C. S., Chou, C. W., et al. (2012). Pretreatment with intrathecal amitriptyline potentiates anti-hyperalgesic effects of post-injury intra-peritoneal amitriptyline following spinal nerve ligation. BMC Neurology, 12(1), 44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cregg, R., Momin, A., Rugiero, F., Wood, J. N., & Zhao, J. (2010). Pain channelopathies. The Journal of Physiology, 588(Pt 11), 1897–1904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Amico, D. (2010). Pharmacological prophylaxis of chronic migraine: A review of double-blind placebo-controlled trials. Neurological Science, 31(Suppl 1), S23–S28.

    Article  Google Scholar 

  • De Fusco, M., Marconi, R., Silvestri, L., Atorino, L., Rampoldi, L., Morgante, L., et al. (2003). Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nature Genetics, 33(2), 192–196.

    Article  PubMed  Google Scholar 

  • Dichgans, M., Freilinger, T., Eckstein, G., Babini, E., Lorenz-Depiereux, B., Biskup, S., et al. (2005). Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, 366(9483), 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Dick, I. E., Brochu, R. M., Purohit, Y., Kaczorowski, G. J., Martin, W. J., & Priest, B. T. (2007). Sodium channel blockade may contribute to the analgesic efficacy of antidepressants. Journal of Pain, 8(4), 315–324.

    Article  CAS  PubMed  Google Scholar 

  • Djouhri, L., Newton, R., Levinson, S. R., Berry, C. M., Carruthers, B., & Lawson, S. N. (2003). Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. Journal of Physiology, 546(Pt 2), 565–576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ducros, A. (2006). [Mechanisms and genetics of migraine]. CNS Drugs, 20 Spec no. 1, 1–11.

  • Ebersberger, A., Natura, G., Eitner, A., Halbhuber, K. J., Rost, R., & Schaible, H. G. (2011). Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat. Pain, 152(5), 1114–1126.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, A. A., & Elliott, J. R. (1993). Characterization of TTX-sensitive and TTX-resistant sodium currents in small cells from adult rat dorsal root ganglia. The Journal of Physiology, 463, 39–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksson, J., Jablonski, A., Persson, A. K., Hao, J. X., Kouya, P. F., Wiesenfeld-Hallin, Z., et al. (2005). Behavioral changes and trigeminal ganglion sodium channel regulation in an orofacial neuropathic pain model. Pain, 119(1–3), 82–94.

    Article  CAS  PubMed  Google Scholar 

  • Estebe, J. P., Gentili, M. E., Le Corre, P., Le Verge, R., Moulinoux, J. P., & Ecoffey, C. (2002). Sciatic nerve block with bupivacaine-loaded microspheres prevents hyperalgesia in an inflammatory animal model. Canadian Journal of Anaesthesia, 49(7), 690–693.

    Article  PubMed  Google Scholar 

  • Fang, Z., Park, C. K., Li, H. Y., Kim, H. Y., Park, S. H., Jung, S. J., et al. (2007). Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. Journal of Biological Chemistry, 282(7), 4757–4764.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finnerup, N. B., Otto, M., McQuay, H. J., Jensen, T. S., & Sindrup, S. H. (2005). Algorithm for neuropathic pain treatment: An evidence based proposal. Pain, 118(3), 289–305.

    Article  CAS  PubMed  Google Scholar 

  • Fusayasu, E., Kowa, H., Takeshima, T., Nakaso, K., & Nakashima, K. (2007). Increased plasma substance P and CGRP levels, and high ACE activity in migraineurs during headache-free periods. Pain, 128(3), 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Gerner, P., Mujtaba, M., Sinnott, C. J., & Wang, G. K. (2001). Amitriptyline versus bupivacaine in rat sciatic nerve blockade. Anesthesiology, 94(4), 661–667.

    Article  CAS  PubMed  Google Scholar 

  • Gold, M. S., Levine, J. D., & Correa, A. M. (1998). Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. The Journal of Neuroscience, 18(24), 10345–10355.

    CAS  PubMed  Google Scholar 

  • Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction. The Journal of General Physiology, 69(4), 497–515.

    Article  CAS  PubMed  Google Scholar 

  • Hur, Y. K., Choi, I. S., Cho, J. H., Park, E. J., Choi, J. K., Choi, B. J., et al. (2008). Effects of carbamazepine and amitriptyline on tetrodotoxinresistant Na+ channels in immature rat trigeminal ganglion neurons. Archives of Pharmacal Research, 31(2), 178–182.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, Y., & Sumi, T. (1992). Amitriptyline inhibits striatal efflux of neurotransmitters via blockade of voltage-dependent Na+ channels. European Journal of Pharmacology, 221(2–3), 377–380.

    Article  CAS  PubMed  Google Scholar 

  • Jang, M. U., Park, J. W., Kho, H. S., Chung, S. C., & Chung, J. W. (2011). Plasma and saliva levels of nerve growth factor and neuropeptides in chronic migraine patients. Oral Diseases, 17(2), 187–193.

    Article  PubMed  Google Scholar 

  • Jarvis, M. F., Honore, P., Shieh, C. C., Chapman, M., Joshi, S., Zhang, X. F., et al. (2007). A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8520–8525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi, S. K., Honore, P., Hernandez, G., Schmidt, R., Gomtsyan, A., Scanio, M., et al. (2009). Additive antinociceptive effects of the selective Nav1.8 blocker A-803467 and selective TRPV1 antagonists in rat inflammatory and neuropathic pain models. Journal of Pain, 10(3), 306–315.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, S. K., Mikusa, J. P., Hernandez, G., Baker, S., Shieh, C. C., Neelands, T., et al. (2006). Involvement of the TTX-resistant sodium channel Nav 1.8 in inflammatory and neuropathic, but not post-operative, pain states. Pain, 123(1–2), 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Kerr, B. J., Souslova, V., McMahon, S. B., & Wood, J. N. (2001). A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. NeuroReport, 12(14), 3077–3080.

    Article  CAS  PubMed  Google Scholar 

  • Kwiecinski, H. (2005). Is migraine a neuronal channelopothy? Neurologia i Neurochirurgia Polska, 39(4 Suppl 1), S61–S64.

    PubMed  Google Scholar 

  • Lai, J., Gold, M. S., Kim, C. S., Bian, D., Ossipov, M. H., Hunter, J. C., et al. (2002). Inhibition of neuropathic pain by decreased expression of the tetrodotoxin-resistant sodium channel, NaV1.8. Pain, 95(1–2), 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Laird, J. M., Souslova, V., Wood, J. N., & Cervero, F. (2002). Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. The Journal of Neuroscience, 22(19), 8352–8356.

    CAS  PubMed  Google Scholar 

  • Leffler, A., Reiprich, A., Mohapatra, D. P., & Nau, C. (2007). Use-dependent block by lidocaine but not amitriptyline is more pronounced in tetrodotoxin (TTX)-Resistant Nav1.8 than in TTX-sensitive Na+ channels. Journal of Pharmacology and Experimental Therapeutics, 320(1), 354–364.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J., Liu, X., Zheng, J., & Yu, S. (2013). Effect of amitriptyline on tetrodotoxin-resistant Nav1.9 currents in nociceptive trigeminal neurons. Molecular Pain, 9(1), 31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang, J., Yu, S., Dong, Z., Wang, X., Liu, R., Chen, X., et al. (2011). The effects of OB-induced depression on nociceptive behaviors induced by electrical stimulation of the dura mater surrounding the superior sagittal sinus. Brain Research, 1424, 9–19.

    Article  CAS  PubMed  Google Scholar 

  • Matthews, E. A., Wood, J. N., & Dickenson, A. H. (2006). Na(v) 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity. Molecular Pain, 2, 5.

    Article  PubMed Central  PubMed  Google Scholar 

  • McGaraughty, S., Chu, K. L., Scanio, M. J., Kort, M. E., Faltynek, C. R., & Jarvis, M. F. (2008). A selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. Journal of Pharmacology and Experimental Therapeutics, 324(3), 1204–1211.

    Article  CAS  PubMed  Google Scholar 

  • McGowan, E., Hoyt, S. B., Li, X., Lyons, K. A., & Abbadie, C. (2009). A peripherally acting Na(v)1.7 sodium channel blocker reverses hyperalgesia and allodynia on rat models of inflammatory and neuropathic pain. Anesthesia and Analgesia, 109(3), 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Mert, T., & Gunes, Y. (2012). Antinociceptive activities of lidocaine and the nav1.8 blocker a803467 in diabetic rats. Journal of the American Association for Laboratory Animal Science, 51(5), 579–585.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moon, J. Y., Song, S., Yoon, S. Y., Roh, D. H., Kang, S. Y., Park, J. H., et al. (2012). The differential effect of intrathecal Nav1.8 blockers on the induction and maintenance of capsaicin- and peripheral ischemia-induced mechanical allodynia and thermal hyperalgesia. Anesthesia and Analgesia, 114(1), 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz, M. A. (1984). The neurobiology of vascular head pain. Annals of Neurology, 16(2), 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz, M. A. (1991). The visceral organ brain: Implications for the pathophysiology of vascular head pain. Neurology, 41(2 (Pt 1)), 182–186.

    Article  CAS  PubMed  Google Scholar 

  • Natura, G., von Banchet, G. S., & Schaible, H. G. (2005). Calcitonin gene-related peptide enhances TTX-resistant sodium currents in cultured dorsal root ganglion neurons from adult rats. Pain, 116(3), 194–204.

    Article  CAS  PubMed  Google Scholar 

  • Nau, C., Seaver, M., Wang, S. Y., & Wang, G. K. (2000). Block of human heart hH1 sodium channels by amitriptyline. Journal of Pharmacology and Experimental Therapeutics, 292(3), 1015–1023.

    CAS  PubMed  Google Scholar 

  • Olesen, J., Burstein, R., Ashina, M., & Tfelt-Hansen, P. (2009). Origin of pain in migraine: Evidence for peripheral sensitisation. The Lancet Neurology, 8(7), 679–690.

    Article  Google Scholar 

  • Ophoff, R. A., Terwindt, G. M., Vergouwe, M. N., van Eijk, R., Oefner, P. J., Hoffman, S. M., et al. (1996). Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell, 87(3), 543–552.

    Article  CAS  PubMed  Google Scholar 

  • Pancrazio, J. J., Kamatchi, G. L., Roscoe, A. K., & Lynch, C, 3rd. (1998). Inhibition of neuronal Na+ channels by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 284(1), 208–214.

    CAS  PubMed  Google Scholar 

  • Parada, C. A., Vivancos, G. G., Tambeli, C. H., Cunha, F. Q., & Ferreira, S. H. (2003). Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fibers causes retrograde mechanical nociceptor sensitization. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2923–2928.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, C. K., Bae, J. H., Kim, H. Y., Jo, H. J., Kim, Y. H., Jung, S. J., et al. (2010). Substance P sensitizes P2X3 in nociceptive trigeminal neurons. Journal of Dental Research, 89(10), 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  • Porreca, F., Lai, J., Bian, D., Wegert, S., Ossipov, M. H., Eglen, R. M., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7640–7644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86(2), 629–640.

    CAS  PubMed  Google Scholar 

  • Rogawski, M. A., & Loscher, W. (2004). The neurobiology of antiepileptic drugs for the treatment of nonepileptic conditions. Nature Medicine, 10(7), 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Rush, A. M., Craner, M. J., Kageyama, T., Dib-Hajj, S. D., Waxman, S. G., & Ranscht, B. (2005). Contactin regulates the current density and axonal expression of tetrodotoxin-resistant but not tetrodotoxin-sensitive sodium channels in DRG neurons. European Journal of Neuroscience, 22(1), 39–49.

    Article  PubMed  Google Scholar 

  • Schwedt, T. J., Krauss, M. J., Frey, K., & Gereau, R. W. (2011). Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia, 31(1), 6–12.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sleeper, A. A., Cummins, T. R., Dib-Hajj, S. D., Hormuzdiar, W., Tyrrell, L., Waxman, S. G., et al. (2000). Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. Journal of Neuroscience, 20(19), 7279–7289.

    CAS  PubMed  Google Scholar 

  • Smitherman, T. A., Walters, A. B., Maizels, M., & Penzien, D. B. (2010). The use of antidepressants for headache prophylaxis. CNS Neuroscience & Therapeutics, 17(5), 462–469.

    Article  Google Scholar 

  • Song, J. H., Ham, S. S., Shin, Y. K., & Lee, C. S. (2000). Amitriptyline modulation of Na(+) channels in rat dorsal root ganglion neurons. European Journal of Pharmacology, 401(3), 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Steiner, T. J., Stovner, L. J., & Birbeck, G. L. (2013). Migraine: The seventh disabler. Journal of Headache Pain, 14(1), 1.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sudoh, Y., Cahoon, E. E., Gerner, P., & Wang, G. K. (2003). Tricyclic antidepressants as long-acting local anesthetics. Pain, 103(1–2), 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Sung, B., & Wang, G. K. (2004). Peripherally administered amitriptyline derivatives have differential anti-allodynic effects in a rat model of neuropathic pain. Neuroscience Letters, 357(2), 115–118.

    Article  CAS  PubMed  Google Scholar 

  • Suter, M. R., Kirschmann, G., Laedermann, C. J., Abriel, H., & Decosterd, I. (2013). Rufinamide attenuates mechanical allodynia in a model of neuropathic pain in the mouse and stabilizes voltage-gated sodium channel inactivated state. Anesthesiology, 118(1), 160–172.

    Article  CAS  PubMed  Google Scholar 

  • Tarnawa, I., Bolcskei, H., & Kocsis, P. (2007). Blockers of voltage-gated sodium channels for the treatment of central nervous system diseases. Recent Patents on CNS Drug Discovery, 2(1), 57–78.

    Article  CAS  PubMed  Google Scholar 

  • Tepper, S. J., Rapoport, A., & Sheftell, F. (2001). The pathophysiology of migraine. Neurologist, 7(5), 279–286.

    Article  CAS  PubMed  Google Scholar 

  • Thorstrand, C., Bergstrom, J., & Castenfors, J. (1976). Cardiac effects of amitriptyline in rats. Scandinavian Journal of Clinical and Laboratory Investigation, 36(1), 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Veneroni, O., Maj, R., Calabresi, M., Faravelli, L., Fariello, R. G., & Salvati, P. (2003). Anti-allodynic effect of NW-1029, a novel Na(+) channel blocker, in experimental animal models of inflammatory and neuropathic pain. Pain, 102(1–2), 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Villarreal, C. F., Sachs, D., Cunha, F. Q., Parada, C. A., & Ferreira, S. H. (2005). The role of Na(V)1.8 sodium channel in the maintenance of chronic inflammatory hypernociception. Neuroscience Letters, 386(2), 72–77.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G. K., Russell, C., & Wang, S. Y. (2004). State-dependent block of voltage-gated Na+ channels by amitriptyline via the local anesthetic receptor and its implication for neuropathic pain. Pain, 110(1–2), 166–174.

    Article  CAS  PubMed  Google Scholar 

  • Weir, G. A., & Cader, M. Z. (2011). New directions in migraine. BMC Medicine, 9, 116.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu, W., Ye, Q., Wang, W., Yan, L., Wang, Q., Xiao, H., et al. (2012). Amitriptyline modulates calcium currents and intracellular calcium concentration in mouse trigeminal ganglion neurons. Neuroscience Letters, 506(2), 307–311.

    Article  CAS  PubMed  Google Scholar 

  • Yan, L., Wang, Q., Fu, Q., Ye, Q., Xiao, H., & Wan, Q. (2010). Amitriptyline inhibits currents and decreases the mRNA expression of voltage-gated sodium channels in cultured rat cortical neurons. Brain Research, 1336, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., He, M., Liu, R., Feng, J., Qiao, X., Yang, X., et al. (2013). Headache yesterday in China: A new approach to estimating the burden of headache, applied in a general-population survey in China. Cephalalgia, 33(15), 1211–1217.

    Google Scholar 

  • Yu, S., Liu, R., Zhao, G., Yang, X., Qiao, X., Feng, J., et al. (2012). The prevalence and burden of primary headaches in China: A population-based door-to-door survey. Headache, 52(4), 582–591.

    Article  PubMed  Google Scholar 

  • Yu, Y., Zhao, F., Guan, S., & Chen, J. (2011). Antisense-mediated knockdown of Na(V)1.8, but not Na(V)1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS One, 6(5), e19865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zahradnik, I., Minarovic, I., & Zahradnikova, A. (2008). Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics, 324(3), 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, K., Leffler, A., Babes, A., Cendan, C. M., Carr, R. W., Kobayashi, J., et al. (2007). Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature, 447(7146), 855–858.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (Nos. 30970417 and 81171058) and the China Postdoctoral Science Foundation (No. 20100481477).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyuan Yu.

Additional information

Jingyao Liang and Xiaoyan Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Liu, X., Pan, M. et al. Blockade of Nav1.8 Currents in Nociceptive Trigeminal Neurons Contributes to Anti-trigeminovascular Nociceptive Effect of Amitriptyline. Neuromol Med 16, 308–321 (2014). https://doi.org/10.1007/s12017-013-8282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8282-6

Keywords

Navigation