Skip to main content

Advertisement

Log in

Delivery of LNA-antimiR-142-3p by Mesenchymal Stem Cells-Derived Exosomes to Breast Cancer Stem Cells Reduces Tumorigenicity

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Exosomes, nano-sized cell-derived vesicles, have been employed as non-synthetic carriers of various pharmaceutics in numerous studies. As higher expression levels of miR-142-3p and miR-150 in breast cancer stem cells (BCSCs) are associated with their clonogenic and tumorigenic capabilities, the present study aims to exploit the mesenchymal stem cells-derived exosomes (MSCs-Exo) to deliver LNA-antimiR-142-3p into MCF7-derived cancer stem-like cells to suppress expression levels of miR-142-3p and miR-150 in order to reduce clonogenicity and tumorigenicity. Our results indicated that the MSCs-Exo can efficiently deliver the LNA-antimiR-142-3p to breast cancer stem-like cells to reduce the miR-142-3p and miR-150 expression levels. Furthermore, the inhibition of the oncomiRs with the delivery of LNA-antimiR-142-3p resulted in a significant reduction of clone-formation and tumor-initiating abilities of the MCF7-derived cancer stem-like cells. In conclusion, we showed that MSCs-derived exosomes could be used as a feasible nanovehicles to deliver RNA-based therapeutics into BCSCs to improve the cancer treatment.

Highlights

  • Exosomes secreted by bone marrow-derived mesenchymal stem cells efficiently transfer the LNA-antimiR-142-3p to breast cancer stem cells.

  • Exosomes-mediated delivery of LNA-antimiR-142-3p to the breast cancer stem cells leads to downregulation of miR-142-3p and miR-150 and the overexpression of target genes.

  • Delivery of LNA-antimiR-142-3p by the exosomes reduces the colony formation capability of breast cancer stem cells in vitro.

  • Inhibition of miR-142-3p and miR-150 by the LNA-antimiR-142-3p loaded exosomes reduces the tumorigenicity of breast cancer stem cells in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andaloussi, S. E., Mäger, I., Breakefield, X. O., & Wood, M. J. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 12, 347.

    Article  Google Scholar 

  2. Vlassov, A. V., Magdaleno, S., Setterquist, R., & Conrad, R. (2012). Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 940–948.

    Article  CAS  Google Scholar 

  3. Morishita, M., Takahashi, Y., Nishikawa, M., & Takakura, Y. (2017). Pharmacokinetics of exosomes—An important factor for elucidating the biological roles of exosomes and for the development of exosome-based therapeutics. Journal of Pharmaceutical Sciences, 106, 2265–2269.

    Article  CAS  Google Scholar 

  4. Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289.

    Article  CAS  Google Scholar 

  5. Johnsen, K. B., Gudbergsson, J. M., Skov, M. N., Pilgaard, L., Moos, T., & Duroux, M. (2014). A comprehensive overview of exosomes as drug delivery vehicles—Endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1846, 75–87.

    Article  CAS  Google Scholar 

  6. Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66, 1883–1890.

    Article  CAS  Google Scholar 

  7. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100, 3983–3988.

    Article  CAS  Google Scholar 

  8. Setoguchi, T., Taga, T., & Kondo, T. (2004). Cancer stem cells persist in many cancer cell lines. Cell Cycle, 3, 412–413.

    Article  Google Scholar 

  9. Shimono, Y., Zabala, M., Cho, R. W., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138, 592–603.

    Article  CAS  Google Scholar 

  10. Isobe, T., Hisamori, S., Hogan, D. J., et al. (2014). miR-142 regulates the tumorigenicity of human breast cancer stem cells through the canonical WNT signaling pathway. Elife, 3, e01977.

    Article  Google Scholar 

  11. Singh, M. S., & Peer, D. (2016). SiRNA delivery: Current trends and future perspectives. Therapeutic Delivery, 7, 51–53.

    Article  CAS  Google Scholar 

  12. Shtam, T. A., Kovalev, R. A., Varfolomeeva, E. Y., Makarov, E. M., Kil, Y. V., & Filatov, M. V. (2013). Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Communication and Signaling, 11, 88.

    Article  CAS  Google Scholar 

  13. Umezu, T., Ohyashiki, K., Kuroda, M., & Ohyashiki, J. (2013). Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene, 32, 2747.

    Article  CAS  Google Scholar 

  14. Zhu, L., Qu, X.-H., Sun, Y.-L., Qian, Y.-M., & Zhao, X.-H. (2014). Novel method for extracting exosomes of hepatocellular carcinoma cells. World Journal Of Gastroenterology: WJG, 20, 6651.

    Article  Google Scholar 

  15. Momen-Heravi, F., Bala, S., Bukong, T., & Szabo, G. (2014). Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine: Nanotechnology, Biology and Medicine, 10, 1517–1527.

    Article  CAS  Google Scholar 

  16. Naseri, Z., Oskuee, R. K., Jaafari, M. R., & Moghadam, M. F. (2018). Exosome-mediated delivery of functionally active mirna-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. International Journal of Nanomedicine, 13, 7727.

    Article  CAS  Google Scholar 

  17. Duan, J.-j., Qiu, W., Xu, S.-l., et al. (2013). Strategies for isolating and enriching cancer stem cells: Well begun is half done. Stem Cells and Development, 22, 2221–2239.

    Article  CAS  Google Scholar 

  18. Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., Hur, M. H., Diebel, M. E., Monville, F., Dutcher, J., Brown, M., Viens, P., Xerri, L., Bertucci, F., Stassi, G., Dontu, G., Birnbaum, D., & Wicha, M. S. (2009). Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Research, 69, 1302–1313.

    Article  CAS  Google Scholar 

  19. Cairo, S., Wang, Y., de Reyniès, A., et al. (2010). Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proceedings of the National Academy of Sciences, 107, 20471–20476.

    Article  CAS  Google Scholar 

  20. Hwang-Verslues, W., Chang, P., Wei, P., et al. (2011). miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene, 30, 2463.

    Article  CAS  Google Scholar 

  21. Wang, Y., Yu, Y., Tsuyada, A., et al. (2011). Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 30, 1470.

    Article  CAS  Google Scholar 

  22. Zhou, A., Diao, L., Xu, H., et al. (2012). β-Catenin/LEF1 transactivates the microRNA-371-373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene, 31, 2968.

    Article  CAS  Google Scholar 

  23. Wellner, U., Schubert, J., Burk, U. C., et al. (2009). The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology, 11, 1487.

    Article  CAS  Google Scholar 

  24. Huang, S., Chen, Y., Wu, W., et al. (2013). miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PloS One, 8, e80707.

    Article  Google Scholar 

  25. Hu, W., Ye, Y., Zhang, W., Wang, J., Chen, A., & Guo, F. (2013). miR-142-3p promotes osteoblast differentiation by modulating Wnt signaling. Molecular Medicine Reports, 7, 689–693.

    Article  CAS  Google Scholar 

  26. Nayerossadat, N., Maedeh, T., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research, 1, 27.

    Article  Google Scholar 

  27. Scholz, C., & Wagner, E. (2012). Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. Journal of Controlled Release, 161, 554–565.

    Article  CAS  Google Scholar 

  28. Lakhal, S., & Wood, M. J. (2011). Exosome nanotechnology: An emerging paradigm shift in drug delivery: Exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays, 33, 737–741.

    Article  CAS  Google Scholar 

  29. Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29, 341–345.

  30. Lässer, C., Eldh, M., & Lötvall, J. (2012). Isolation and characterization of RNA-containing exosomes. JoVE (Journal of Visualized Experiments), e3037.

  31. Munoz, J. L., Bliss, S. A., Greco, S. J., Ramkissoon, S. H., Ligon, K. L., & Rameshwar, P. (2013). Delivery of functional anti-miR-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy-Nucleic Acids, 2, e126.

    Article  Google Scholar 

  32. Ohno, S.-i., Takanashi, M., Sudo, K., et al. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 21, 185–191.

    Article  CAS  Google Scholar 

  33. Kim, S. H., Bianco, N. R., Shufesky, W. J., Morelli, A. E., & Robbins, P. D. (2007). Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. The Journal of Immunology, 179, 2242–2249.

    Article  CAS  Google Scholar 

  34. Lee, J.-K., Park, S.-R., Jung, B.-K., et al. (2013). Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One, 8, e84256.

    Article  Google Scholar 

  35. McLellan, A. (2009). Exosome release by primary B cells. Critical Reviews™ in Immunology, 29, 203–217.

    Article  CAS  Google Scholar 

  36. Takahashi, Y., Nishikawa, M., Shinotsuka, H., Matsui, Y., Ohara, S., Imai, T., & Takakura, Y. (2013). Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. Journal of Biotechnology, 165, 77–84.

    Article  CAS  Google Scholar 

  37. Greco, S. J., & Rameshwar, P. (2012). Mesenchymal stem cells in drug/gene delivery: Implications for cell therapy. Therapeutic Delivery, 3, 997–1004.

    Article  CAS  Google Scholar 

  38. Sundaram, B., Herbert, F. J., & Kumar, S. (2017). Human mesenchymal stem cell (hMSC)-derived exosomes/exosome mimetics as a potential novel therapeutic tool for regenerative medicine. Regenerative Medicine: Laboratory to Clinic: Springer, 81–97.

  39. Sharif, S., Ghahremani, M., & Soleimani, M. (2018). Delivery of exogenous miR-124 to glioblastoma multiform cells by Wharton’s jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity. Stem Cell Reviews and Reports, 14, 236–246.

    Article  CAS  Google Scholar 

  40. Katakowski, M., Buller, B., Zheng, X., Lu, Y., Rogers, T., Osobamiro, O., Shu, W., Jiang, F., & Chopp, M. (2013). Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Letters, 335, 201–204.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues and PhD students, for help and support during this work, in the Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. We also thank Mrs. Karen Fascioli for editing the manuscript.

Funding

This research was funded by Mashhad University of Medical Sciences and Tarbiat Modares University, Tehran (NO.931289); and a grant from cancer research center of cancer institute of Iran (Shams cancer charity, Grant No: 37604–202–01-97). The funding sources played no decisive role in collection, analysis, the interpretation of the data, as well as decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi forouzandeh-moghadam or Mahmoud Reza Jaafari.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

naseri, Z., Oskuee, R.K., forouzandeh-moghadam, M. et al. Delivery of LNA-antimiR-142-3p by Mesenchymal Stem Cells-Derived Exosomes to Breast Cancer Stem Cells Reduces Tumorigenicity. Stem Cell Rev and Rep 16, 541–556 (2020). https://doi.org/10.1007/s12015-019-09944-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09944-w

Keywords

Navigation