Skip to main content

Advertisement

Log in

The Potential Role of Genetically-Modified Pig Mesenchymal Stromal Cells in Xenotransplantation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) are known to have regenerative, anti-inflammatory, and immunodulatory effects. There are extensive indications that pig MSCs function satisfactorily across species barriers. Pig MSCs might have considerable therapeutic potential, particularly in xenotransplantation, where they have several potential advantages. (i) pMSCs can be obtained from the specific organ- or cell-source donor pig or from an identical (cloned) pig. (ii) They are easy to obtain in large numbers, negating the need for prolonged ex vivo expansion. (iii) They can be obtained from genetically-engineered pigs, and the genetic modification can be related to the therapeutic goal of the MSCs. We have reviewed our own studies on MSCs from genetically-engineered pigs, and summarize them here. We have successfully harvested and cultured MSCs from wild-type and genetically-engineered pig bone marrow and adipose tissue. We have identified several pig (p)MSC surface markers (positive for CD29, CD44, CD73, CD105, CD166, and negative for CD31, CD45), have demonstrated their proliferation and differentiation (into adipocytes, osteoblasts, and chondroblasts), and evaluated their antigenicity and immune suppressive effects on human peripheral blood mononuclear cells and CD4+T cells. They have identical or very similar characteristics to MSCs from other mammals. Genetically-modified pMSCs are significantly less immunogenic than wild-type pMSCs, and downregulate the human T cell response to pig antigens as efficiently as do human MSCs. We hypothesized that pMSCs can immunomodulate human T cells through induction of apoptosis or anergy, or cause T cell phenotype switching with induction of regulatory T cells, but we could find no evidence for these mechanisms. However, pMSCs upregulated the expression of CD69 on human CD4+ and CD8+ T cells, the relevance of which is currently under investigation. We conclude that MSCs from genetically-engineered pigs should continue to be investigated for their immunomodulatory (and regenerative and anti-inflammatory) effects in pig-to-nonhuman primate organ and cell transplantation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AdMSC:

Adipose-derived mesenchymal stromal cells

AECs:

Aortic endothelial cells

Gal:

Galactose-α1,3-galactose

GTKO:

α1,3-galactosyltransferase gene-knockout

MLR:

Mixed lymphocyte reaction

MSC:

Mesenchymal stromal cells

PBMC:

Peripheral blood mononuclear cells

SLA:

Swine leukocyte antigen

References

  1. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    Article  CAS  PubMed  Google Scholar 

  2. Sordi, V. (2009). Mesenchymal stem cell homing capacity. Transplantation, 87, S42–S45.

    Article  PubMed  Google Scholar 

  3. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, L., Zhao, Y., & Shi, S. (2012). Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration. Journal of Dental Research, 91, 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, S., Qu, X., & Zhao, R. C. (2012). Clinical applications of mesenchymal stem cells. Journal of Hematology and Oncology, 5, 19.

    Article  PubMed  Google Scholar 

  6. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.

    Article  PubMed  Google Scholar 

  7. Le Blanc, K., Rasmusson, I., Gotherstrom, C., Seidel, C., Sundberg, B., Sundin, M., et al. (2004). Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scandinavian Journal of Immunology, 60, 307–315.

    Article  PubMed  Google Scholar 

  8. Reinders, M. E., Fijter, J. W., Roelofs, H., Bajema, I. M., Vries, D. K., Schaapherder, A. F., et al. (2013). Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Translational Medicine, 2, 107–111.

    Article  CAS  PubMed  Google Scholar 

  9. Mesenchymal stem cell transplantation in the treatment of chronic allograft nephropathy. (Under investigation, ClinicalTrials.gov Identifier: NCT00659620)

  10. Perico, N., Casiraghi, F., Introna, M., Gotti, E., Todeschini, M., Cavinato, R. A., et al. (2011). Autologous mesenchymal stromal cells and kidney transplantation: a pilot study of safety and clinical feasibility. Clinical Journal of the American Society of Nephrology, 6, 412–422.

    Article  PubMed  Google Scholar 

  11. Li, J., Ezzelarab, M. B., & Cooper, D. K. (2012). Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation, 19, 273–285.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ezzelarab, M., Ayares, D., & Cooper, D. K. (2010). The potential of genetically-modified pig mesenchymal stromal cells in xenotransplantation. Xenotransplantation, 17, 3–5.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ezzelarab, M., Ezzelarab, C., Wilhite, T., Kumar, G., Hara, H., Ayares, D., et al. (2011). Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses. Xenotransplantation, 18, 183–195.

    Article  PubMed  Google Scholar 

  14. Kumar, G., Hara, H., Long, C., Shaikh, H., Ayares, D., Cooper, D. K., et al. (2012). Adipose-derived mesenchymal stromal cells from genetically modified pigs: immunogenicity and immune modulatory properties. Cytotherapy, 14, 494–504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Li, J., Andreyeva, O., Chen, M., Marcoa, M., Iwasea, H., Long, C., et al. (2013). Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cellular Immunology (in press).

  16. Cooper, D. K., Ekser, B., Burlak, C., Ezzelarab, M., Hara, H., Paris, L., et al. (2012). Clinical lung xenotransplantation–what donor genetic modifications may be necessary? Xenotransplantation, 19, 144–158.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Ekser, B., Ezzelarab, M., Hara, H., van der Windt, D. J., Wijkstrom, M., Bottino, R., et al. (2012). Clinical xenotransplantation: the next medical revolution? Lancet, 379, 672–683.

    Article  PubMed  Google Scholar 

  18. Hara, H., Long, C., Lin, Y. J., Tai, H. C., Ezzelarab, M., Ayares, D., et al. (2008). In vitro investigation of pig cells for resistance to human antibody-mediated rejection. Transplant International, 21, 1163–1174.

    Article  PubMed  Google Scholar 

  19. Phelps, C. J., Koike, C., Vaught, T. D., Boone, J., Wells, K. D., Chen, S. H., et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science, 299, 411–414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Brusko, T. M. (2009). Mesenchymal stem cells: a potential border patrol for transplanted islets? Diabetes, 58, 1728–1729.

    Article  CAS  PubMed  Google Scholar 

  21. Solari, M. G., Srinivasan, S., Boumaza, I., Unadkat, J., Harb, G., Garcia-Ocana, A., et al. (2009). Marginal mass islet transplantation with autologous mesenchymal stem cells promotes long-term islet allograft survival and sustained normoglycemia. Journal of Autoimmunity, 32, 116–124.

    Article  CAS  PubMed  Google Scholar 

  22. Rosland, G. V., Svendsen, A., Torsvik, A., Sobala, E., McCormack, E., Immervoll, H., et al. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Research, 69, 5331–5339.

    Article  CAS  PubMed  Google Scholar 

  23. Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, J. M., & Lee, T. (2005). Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. Journal of Cellular Physiology, 205, 194–201.

    Article  CAS  PubMed  Google Scholar 

  24. Barry, F. P., & Murphy, J. M. (2004). Mesenchymal stem cells: clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36, 568–584.

    Article  CAS  Google Scholar 

  25. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8, 726–736.

    Article  CAS  PubMed  Google Scholar 

  26. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107, 1395–1402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Jiang Li is funded by the China Scholarship Council. Mohamed Ezzelarab is supported in part by the Joseph A. Patrick Research Fellowship in Transplantation of the Thomas E. Starzl Transplantation Institute of the University of Pittsburgh. Studies on xenotransplantation at the Thomas E. Starzl Transplantation Institute are supported in part by CMRF (competitive medical research funding) from the University of Pittsburgh Medical Center, NIH grants #1U19AI090959-01 and #1PO1 HL107152, and by Sponsored Research Agreements between the University of Pittsburgh and Revivicor, Inc., Blacksburg, VA.

Conflict of Interest

DA is an employee of Revivicor Inc., Blacksburg, VA. The other authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. C. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Ezzelarab, M.B., Ayares, D. et al. The Potential Role of Genetically-Modified Pig Mesenchymal Stromal Cells in Xenotransplantation. Stem Cell Rev and Rep 10, 79–85 (2014). https://doi.org/10.1007/s12015-013-9478-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-013-9478-8

Keywords

Navigation