Skip to main content
Log in

Conformational Preferences of Modified Nucleoside N(4)-Acetylcytidine, ac4C Occur at “Wobble” 34th Position in the Anticodon Loop of tRNA

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Conformational preferences of modified nucleoside, N(4)-acetylcytidine, ac4C have been investigated using quantum chemical semi-empirical RM1 method. Automated geometry optimization using PM3 method along with ab initio methods HF SCF (6-31G**), and density functional theory (DFT; B3LYP/6-31G**) have also been made to compare the salient features. The most stable conformation of N(4)-acetyl group of ac4C prefers “proximal” orientation. This conformation is stabilized by intramolecular hydrogen bonding between O(7)···HC(5), O(2)···HC2′, and O4′···HC(6). The “proximal” conformation of N(4)-acetyl group has also been observed in another conformational study of anticodon loop of E. coli elongator tRNAMet. The solvent accessible surface area (SASA) calculations revealed the role of ac4C in anticodon loop. The explicit molecular dynamics simulation study also shows the “proximal” orientation of N(4)-acetyl group. The predicted “proximal” conformation would allow ac4C to interact with third base of codon AUG/AUA whereas the ‘distal’ orientation of N(4)-acetyl cytidine side-chain prevents such interactions. Single point energy calculation studies of various models of anticodon–codon bases revealed that the models ac4C(34)(Proximal):G3, and ac4C(34)(Proximal):A3 are energetically more stable as compared to models ac4C(34)(Distal):G3, and ac4C(34)(Distal):A3, respectively. MEPs calculations showed the unique potential tunnels between the hydrogen bond donor–acceptor atoms of ac4C(34)(Proximal):G3/A3 base pairs suggesting role of ac4C in recognition of third letter of codons AUG/AUA. The “distal” conformation of ac4C might prevent misreading of AUA codon. Hence, this study could be useful to understand the role of ac4C in the tertiary structure folding of tRNA as well as in the proper recognition of codons during protein biosynthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bjork, G. R. (1995). Biosynthesis and function of modified nucleosides. In D. R. Soll & U. L. RajBhandary (Eds.), tRNA: Structure, biosynthesis, and function (pp. 165–205). Washington, DC: ASM.

    Google Scholar 

  2. Sprinzl, M., Horn, C., Brown, M., Ludovitch, A., & Steinberg, S. (1998). Compilation of tRNA sequences and sequence of tRNA gene. Nucleic Acids Research, 26, 148–153.

    Article  PubMed  CAS  Google Scholar 

  3. Rozenski, J., Crain, P. F., & McCloskey, J. A. (1999). The RNA modification database: 1999 Update. Nucleic Acids Research, 27, 196–197.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson, J., Phan, L., Cuesta, R., Carlson, B. A., Pak, M., Asano, K., et al. (1998). The essential Gcd10p–Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes & Development, 12, 3650–3662.

    Article  CAS  Google Scholar 

  5. Helm, M. (2006). Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Research, 34, 721–733.

    Article  PubMed  CAS  Google Scholar 

  6. Kaneko, T., Suzuki, T., Kapushoc, S. T., Rubio, M. A., Ghazvini, J., Watanabe, K., et al. (2003). Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: Implication for tRNA sorting mechanism. The EMBO Journal, 22, 657–667.

    Article  PubMed  CAS  Google Scholar 

  7. Kowalak, J. A., Dalluge, J. J., McCloskey, J. A., & Stetter, K. O. (1994). The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry, 33, 7869–7876.

    Article  PubMed  CAS  Google Scholar 

  8. McCloskey, J. A., & Nishimura, S. (1977). Modified nucleosides in transfer RNA. Accounts of Chemical Research, 10, 403–410.

    Article  CAS  Google Scholar 

  9. Morin, A., Auxilien, S., Senger, B., Tewari, R., & Grosjean, H. (1998). Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: An in vivo study with Xenopus laevis oocytes. RNA, 4, 24–37.

    PubMed  CAS  Google Scholar 

  10. Motorin, Y., Bec, G., Tewari, R., & Grosjean, H. (1977). Transfer RNA recognition by the Escherichia coli2-isopentenyl-pyrophosphate: tRNA ∆2-isopentenyl transferase: dependence on the anticodon arm structure. RNA, 3, 721–733.

    Google Scholar 

  11. Yokoyama, S., & Nishimura, S. (1995). In D. R. Soll & U. L. RajBhandary (Eds.), tRNA: Structure, biosynthesis, and function (pp. 207–223). Washington, DC: ASM.

    Google Scholar 

  12. Suzuki, T., Nagao, A., & Suzuki, T. (2011). Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley interdisciplinary Review: Advance Review, 2, 376–386.

    Article  CAS  Google Scholar 

  13. Wang, X., Yan, Q., & Guan, M. Y. (2010). Combination of the loss of cmnm5U34 with the lack of s2U34 modification of tRNALys, tRNAGlu and tRNAGln altered mitochondrial biogenesis and respiration. Journal of Molecular Biology, 395, 1038–1048.

    Article  PubMed  CAS  Google Scholar 

  14. Limbach, P. A., Crain, P. F., & McCloskey, J. A. (1994). Summary: The modified nucleosides of RNA. Nucleic Acids Research, 22, 2183–2196.

    Article  PubMed  CAS  Google Scholar 

  15. Persson, B. C. (1993). Modification of tRNA as a regulatory device. Molecular Microbiology, 8, 1011–1016.

    Article  PubMed  CAS  Google Scholar 

  16. Hatfield, D., Feng, Y. X., Lee, B. J., Rein, A., Levin, J. G., & Oroszlan, S. (1989). Chromatographic analysis of the aminoacyl-tRNAs which are required for translation of codons at and around the ribosomal frameshift sites of HIV, HTLV-1 and BLV. Virology, 173, 736–742.

    Article  PubMed  CAS  Google Scholar 

  17. Ohashi, Z., Murao, K., Yahagi, T., von Minden, D. L., McCloskey, J. A., & Nishimura, S. (1972). Characterization of C+ located in the first position of the anticodon of E. coli tRNAMet as N4-acetylcytidine. Biochemistry Biophysics Acta, 262, 209–213.

    Article  CAS  Google Scholar 

  18. Sprinzl, M., Hartmann, T., Weber, J., Blank, J., & Zeidler, R. (1989). Compilation of tRNA sequence and sequence of tRNA gene. Nucleic Acids Research, 17(Suppl.), r1–r172.

    Article  PubMed  CAS  Google Scholar 

  19. Bruenger, E., Kowalak, J. A., Kuchino, Y., McCloskey, J. A., Mizushima, H., Stetter, K. O., et al. (1993). 5S rRNA modification in the hyperthermophilic archaea Sulfolobus solfataricus and Pyrodictium occultum. The Journal of Federation of American Society of Experimental Biology, 7, 196–200.

    CAS  Google Scholar 

  20. McCarroll, R., Olsen, G. J., Sthal, Y. D., Woese, C. R., & Sogin, M. L. (1983). Nucleotide sequence of the Dictyostelium discoideum small-subunit ribosomal ribonucleic acid inferred from the gene sequence: Evolutionary implications. Biochemistry, 22, 5858–5868.

    Article  CAS  Google Scholar 

  21. Thomas, G., Gordon, J., & Rogg, H. (1978). N4-Acetylcytidine. Journal of Biological Chemistry, 253, 1101–1105.

    PubMed  CAS  Google Scholar 

  22. Ushida, C., Muramatsu, T., Mizushima, H., Ueda, T., Watanabe, K., Stetter, K. O., et al. (1996). Structural feature of the initiator tRNA gene from Pyrodictium occultum and the thermal stability of its gene product, tRNAiMet. Biochimie, 78, 847–855.

    Article  PubMed  CAS  Google Scholar 

  23. Ikeuchi, Y., Kitahara, K., & Suzuki, T. (2008). The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. The EMBO Journal, 27, 2194–2203.

    Article  PubMed  CAS  Google Scholar 

  24. Johansson, M. J. O., & Bystrom, A. S. (2004). The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA, 10, 712–719.

    Article  PubMed  CAS  Google Scholar 

  25. Stern, L., & Schulman, L. H. (1978). The role of the minor base N4-acetylcytidine in the function of the E. coli non initiator methionine transfer RNA. Journal of Biological Chemistry, 253, 6132–6139.

    PubMed  CAS  Google Scholar 

  26. Kawai, G., Hashizume, T., Miyazawa, T., McCloskey, J. A., & Yokoyama, S. (1989). Conformational characteristics of 4-acetylcytidine found in tRNA. Nucleic Acids Symposium Series, 21, 61–62.

    PubMed  CAS  Google Scholar 

  27. Parthasarathy, R., Ginell, S. L., De, N. C., & Chheda, G. B. (1978). Conformation of N4-acetylcytidine, a modified nucleoside of tRNA and stereochemistry of codon–anticodon interaction. Biochemical and Biophysical Research Communications, 83, 657–663.

    Article  PubMed  CAS  Google Scholar 

  28. Kawai, G., Hashizume, T., Yasuda, M., Miyazawa, T., McCloskey, J. A., & Yokoyama, S. (1992). Conformational rigidity of N4-acetyl-2′-o-methylcytdine found in tRNA of extremely thermophilic archaebacteria (Archaea). Nucleosides Nucleotides and Nucleic acid, 11, 759–771.

    Article  CAS  Google Scholar 

  29. Wada, T., Kobori, A., Kawahara, S., & Sekine, M. (1998). Synthesis and properties of oligodeoxyribonucleotides containing 4-N-acetylcytosine bases. Tetrahedron Letters, 39, 6907–6910.

    Article  CAS  Google Scholar 

  30. Kotelawala, L., Grayhack, E. J., & Phizicky, E. M. (2008). Identification of yeast tRNA Um44 2′-o-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNAser species. RNA, 14, 158–169.

    Article  PubMed  CAS  Google Scholar 

  31. Thomale, J., & Nass, G. (1982). Elevated urinary excretion of RNA catabolites as an early signal of development in mice. Cancer Letters, 15, 149–159.

    Article  PubMed  CAS  Google Scholar 

  32. Zheng, Y. F., Xu, G. W., Liu, D. Y., Xiong, J. H., Zhang, P. D., Zhang, C., et al. (2002). Study of urinary nucleosides as biological marker in cancer patients analyzed by micellar electrokinetic capillary chromatography. Electrophoresis, 23, 4104–4109.

    Article  PubMed  CAS  Google Scholar 

  33. Ohkubo, A., Kasuya, R., Sakamoto, K., Miyata, K., Taguchi, K., Nagasawa, H., et al. (2008). ‘Protected DNA probes’ capable of strong hybridization without removal of base protecting groups. Nucleic Acid Research, 36, 1952–1964.

    Article  CAS  Google Scholar 

  34. Sonawane, K. D., & Tewari, R. (2008). Conformational preferences of hypermodified nucleoside lysidine (k2C) occuring at “wobble” position in anticodon loop of tRNAIle. Nucleosides, Nucleotides & Nucleic Acids, 27, 1158–1174.

    Article  CAS  Google Scholar 

  35. Sonavane, U. B., Sonawane, K. D., & Tewari, R. (2002). Conformational preferences of base sustitutent in hypermodified nucleotide queuosine 5′-monophsophate pQ and protonated variant pQH+. Journal of Biomolecular Structure & Dynamics, 20, 473–485.

    Article  CAS  Google Scholar 

  36. Tewari, R. (1990). Conformational preferences of modified nucleic acid bases N 6-methyl-N 6-(N-threonylcarbonyl) adenine and 2-methylthio-N 6-(N-threonyl carbonyl) adenine by quantum chemical PCILO calculations. Journal of Biomolecular Structure & Dynamics, 8, 675–686.

    Article  CAS  Google Scholar 

  37. Tewari, R. (1987). Theoretical studies on conformational preferences of modified nucleic acid base N 6-(N-glycylcarbonyl) adenine. International Journal of Quantum Chemistry, 31, 611–624.

    Article  CAS  Google Scholar 

  38. Tewari, R. (1988). Conformational preferences of modified nucleic acid base N 6-( 2-isopentenyl) adenine and 2-methylthio-N 6-( 2-isopentenyl) adenine by the quantum chemcial PCILO calculations. International Journal of Quantum Chemistry, 34, 133–142.

    Article  CAS  Google Scholar 

  39. Sonawane, K. D., Sonavane, U. B., & Tewari, R. (2002). Conformational preferences of anticodon 3′-adjacent hypermodified nucleic acid base cis- or trans-zeatin and its 2-methylthio derivatives cis- or trans-ms2zeatin. Journal of Biomolecular Structure & Dynamics, 19, 637–648.

    Article  CAS  Google Scholar 

  40. Tewari, R. (1994). Protonation-induced conformational flipping in hypermodified nucleic acid base N 6-(N-glycylcarbonyl) adenine. International Journal of Quantum Chemistry, 51, 105–112.

    Article  CAS  Google Scholar 

  41. Sonavane, U. B., Sonawane, K. D., Morin, A., Grosjean, H., & Tewari, R. (1999). N(7)-protonation-induced conformational flipping in hypermodified nucleic acid bases N 6-(N-threonylcarbonyl) adenine and its 2-methylthio- or N(6)-methyl-derivatives. International Journal of Quantum Chemistry, 75, 223–229.

    Article  CAS  Google Scholar 

  42. Sonawane, K. D., Sonavane, U. B., & Tewari, R. (2000). Conformational flipping of the N(6)-substituent in diprotonated N6-(N-glycylcarbonyl) adenines: the role of N(6)H in purine-ring-protonated ureido adenines. International Journal of Quantum Chemistry, 78, 398–405.

    Article  CAS  Google Scholar 

  43. Kumbhar, N. M., & Sonawane, K. D. (2011). Iso-energetic multiple conformation of hypermodified nucleic acid base wybutine which occur at 37th position in anticodon loop of tRNAPhe. Journal of Molecular Graphics and Modeling, 29, 935–946.

    Article  CAS  Google Scholar 

  44. Bavi, R. S., Kamble, A. D., Kumbhar, N. M., Kumbhar, B. V., & Sonawane, K. D. (2011). Conformational preferences of modified nucleoside N2-methylguanosine (m2G) and its derivative N 2,N 2-dimethylguanosine (m 22 G) occur at 26th position (Hinge Region) in tRNA. Cell Biochemistry and Biophysics, 61, 507–521.

    Article  PubMed  CAS  Google Scholar 

  45. Holbrook, S. R., Sussman, J. L., Warrant, R. W., & Kim, S. H. (1978). Crystal structure of yeast phenylalanine transfer RNA II. Structural feature and functional implications. Journal of Molecular Biology, 123, 631–660.

    Article  PubMed  CAS  Google Scholar 

  46. Kennard, O. (1980–1981). In R. C. Weast & M. J. Asile (Eds.), CRC handbook of chemistry and physics (61st ed., pp. F208–F211). Boca Raton: CRC Press.

  47. Rocha, G. B., Freire, R. O., Simas, A. M., & Stewart, J. J. P. (2006). RM1: A reparameterization of AM1 for H, C, N, O, P, P, F, Cl, Br, and I. Journal of Computational Chemistry, 27, 1101–1111.

    Article  PubMed  CAS  Google Scholar 

  48. Ferreira, D. C., Machado, A. E. H., Tiago, F. S., Madurro, J. M., Madurro, A. G. B., & Odonirio, A. (2012). Molecular modeling study on the possible polymers formed during the electropolymerization of 3-hydroxyphenylacetic acid. Journal of Molecular Graphics and Modelling, 34, 18–27.

    Article  PubMed  CAS  Google Scholar 

  49. Labidi, N. S. (2012). Comparative study of kinetics isomerization of substituted polyacetylene (Cl, F, Br and I): Semi empirical RM1 study. Journal of Saudi Chemical Society. doi:10.1016/j.jscs.2012.01.008.

  50. Pol-Fachin, L., Fraga, C. A. M., Barreiro, E. J., & Verli, H. (2010). A characterization of the conformational ensemble from bioactive N-acylhydrazone derivatives. Journal of Molecular Graphics and Modelling, 28, 446–454.

    Article  PubMed  CAS  Google Scholar 

  51. Kerber, V. A., Passos, C. S., Verli, H., Fett-Neto, A. G., Quirion, J. P., & Henriques, A. T. (2008). Psychollatine, a glucosidic monoterpene indole alkaloid from Psychotria umbellata. Journal of Natural Product, 71, 697–700.

    Article  CAS  Google Scholar 

  52. Goncalves, A. S., Franca, T. C. C., Figueroa-Villar, J. D., & Pascutti, P. G. (2010). Conformational analysis of toxogonine, TMB-4 and HI-6 using PM6 and RM1 methods. Journal of Brazilian Chemical Society, 21, 179–184.

    Article  CAS  Google Scholar 

  53. Anisimov, V. M., & Cavasotto, C. N. (2011). Hydration free energies using semiempirical quantum mechanical Hamiltonians and a continuum solvent model with multiple atomic-type parameters. Journal of Physical Chemistry B, 115, 7896–7905.

    Article  CAS  Google Scholar 

  54. Hehre, W. J., Radom, L., Schleyer, P. V. R., & Pople, J. A. (1986). In ab initio molecular orbital theory. New York: Wiley.

    Google Scholar 

  55. Parthasarathy, R., Ohrt, J. M., & Chheda, G. B. (1977). Modified nucleosides and conformation of anticodon loops: Crystal structure of t6A and g6A. Biochemistry, 16, 4999–5008.

    Article  PubMed  CAS  Google Scholar 

  56. Tewari, R. (1987). Theoretical studies on conformational preferences of modified nucleic acid base N 6-(N-threonylcarbonyl) adenine. Indian Journal of Biochemistry & Biophysics, 24, 170–176.

    CAS  Google Scholar 

  57. Stewart, J. J. P. (1991). Optimization of parameters for semiempirical methods. III extension of PM3 to Be, Mg, Zn, Ga, GE, As, Se, Cd, In, Sn, Sb, Te, Hg, T1, Pb, and Bi. Journal of Computational Chemistry, 12, 320–341.

    Article  CAS  Google Scholar 

  58. Becke, A. D. (1992). Density functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98, 5648–5652.

    Article  Google Scholar 

  59. Francl, M. M., Pietro, W. J., Hehre, W. J., Binkley, J. S., Gordon, M. S., Defrees, D. J., et al. (1982). Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. Journal of Chemical Physics, 77, 3654–3665.

    Article  CAS  Google Scholar 

  60. Selmer, M., Dunham, C. M., Murphy, F. V., I. V., Weixlbaumer, A., Petry, S., Kelley, A. C., et al. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Nature, 313, 1935–1942.

    CAS  Google Scholar 

  61. Takemoto, C., Spremulli, L. L., Benkowski, L. A., Ueda, T., Yokogawa, T., & Watanabe, K. (2009). Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Nucleic Acids Research, 37, 1616–1627.

    Article  PubMed  CAS  Google Scholar 

  62. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., et al. (2004). UCSF chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  63. Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. Journal of Chemical Physics, 54, 724–728.

    Article  CAS  Google Scholar 

  64. Hariharan, P. C., & Pople, J. A. (1972). The effect of d-function on molecular orbital energies for hydrocarbons. Chemical Physics Letter, 16(2), 217–219.

    Article  CAS  Google Scholar 

  65. Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self consistent molecular orbital methods. XII. Further extensions of gaussian type basis sets for use in molecular orbital studies of organic molecules. Journal of Chemical Physics, 56, 2257–2261.

    Article  CAS  Google Scholar 

  66. Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well behaved electrostatic potential based method using charge restrains for deriving atomic charges: The RESP model. Journal of Physical Chemistry, 97, 10269–10280.

    Article  CAS  Google Scholar 

  67. Case, D. A., Darden, T. A., Cheathem, T. E., I. I. I., Simmerling, C. L., Wang, J., Duke, R. E., et al. (2008). AMBER 10. San Francisco: University of California.

    Google Scholar 

  68. Jorgesen, W. J., Chnadrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 79, 926–935.

    Article  Google Scholar 

  69. York, D. M., Darden, T. A., & Pedersen, L. G. (1993). The effect of long-range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. Journal of Chemical Physics, 99, 8345–8348.

    Article  CAS  Google Scholar 

  70. Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23, 327–341.

    Article  CAS  Google Scholar 

  71. Berendsen, H. G. C., Postma, J. P. M., Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal Chemical Physics, 81, 3684–3690.

    Article  CAS  Google Scholar 

  72. Auffinger, P. S., Loise-May, S., & Westhof, E. (1995). Multiple molecular dynamics simulations of the anticodon loop of tRNAAsp in aqueous solution with counterions. Journal of the American Chemical Society, 117, 6720–6726.

    Article  CAS  Google Scholar 

  73. Auffinger, P. S., Loise-May, S., & Westhof, E. (1996). Hydration of C–H group of tRNA. Faraday Discussion, 103, 151–173.

    Article  CAS  Google Scholar 

  74. Ghosh, A., & Bansal, M. (1999). C-H···O hydrogen bonds in minor groove of A-tracts in DNA double helices. Journal of Molecular Biology, 294, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  75. Auffinger, P., Louise-May, S., & Westhof, E. (1996). Molecular dynamics simulations of the anticodon hairpin of tRNAAsp: Structuring effects of C–H–O hydrogen bonds and of long-range hydration forces. Journal of the American Chemical Society, 118, 1181–1189.

    Article  CAS  Google Scholar 

  76. Juhling, F., Morl, M., Hartmann, R. K., Sprinzl, M., Stadler, P. F., & Putz, J. (2009). tRNAdb 2009: Compilation of tRNA sequences and tRNA genes. Nucleic Acids Research, 37(suppl. 1), D159–D162.

    Article  PubMed  Google Scholar 

  77. Steinberg, S., & Cedergren, R. (1995). A correlation between N2-dimethylguanosine presence and alternate tRNA conformers. RNA, 1, 886–891.

    PubMed  CAS  Google Scholar 

  78. Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

  79. Otero-Navas, I., & Seminario, J. M. (2012). Molecular electrostatic potential of DNA base–base pairing and mispairing. Journal of Molecular Modeling, 18, 91–101.

    Article  PubMed  CAS  Google Scholar 

  80. Kumbhar, N. M., Kumbhar, B. V., & Sonawane, K. D. (2012). Structrual significance of hypermodified nucleic acid base hydroxywybutine (OHyW) which occur at 37th position in anticodon loop of tRNAPhe. Journal of Molecular Graphics and Modeling, 38, 174–185.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the University Grants Commission, New Delhi under the major research project sanctioned to KDS. BVK and ADK are thankful to UGC for providing project fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailas D. Sonawane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumbhar, B.V., Kamble, A.D. & Sonawane, K.D. Conformational Preferences of Modified Nucleoside N(4)-Acetylcytidine, ac4C Occur at “Wobble” 34th Position in the Anticodon Loop of tRNA. Cell Biochem Biophys 66, 797–816 (2013). https://doi.org/10.1007/s12013-013-9525-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9525-8

Keywords

Navigation