Skip to main content
Log in

Osteopontin Promotes Mesenchymal Stem Cell Migration and Lessens Cell Stiffness via Integrin β1, FAK, and ERK Pathways

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The use of mesenchymal stem cells (MSCs) for therapeutic applications has attracted great attention because MSCs home to and engraft to injured tissues after in vivo administration. The expression of osteopontin (OPN) is elevated in response to injury and inflammation, and its role on rat bone marrow-derived mesenchymal stem cells (rMSCs)-directed migration has been elucidated. However, the signaling pathways through the activation of which OPN promotes rMSCs migration and the involvement of cell mechanics during OPN-mediating rMSCs migration have not been well studied. In this study, we found that OPN activated focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) signaling pathways by the ligation of integrin β1 in rMSCs. Inhibitors of FAK and ERK pathways inhibited OPN-induced rMSCs migration, indicating the possible involvement of FAK and ERK activation in OPN-induced migration in rMSCs. In addition, atomic force microscopy analysis showed that OPN reduced cell stiffness in rMSCs via integrin β1, FAK, and ERK pathways, suggesting that the promotion of rMSCs migration might partially be contributing to the decrease in cell stiffness stimulated by OPN. To further examine the role of OPN on cell motility and stiffness, actin cytoskeleton of rMSCs was observed. The reduced well-defined F-actin filaments and the promoted formation of pseudopodia in rMSCs induced by OPN explained the reduction in cell stiffness and the increase in cell migration. The current study data have shown for the first time that OPN binding to integrin β1 promotes rMSCs migration through the activation of FAK and ERK pathways, which may be attributed to the change in cell stiffness caused by the reduction in the amount of organized actin cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lubis, A. M., & Lubis, V. K. (2012). Adult bone marrow stem cells in cartilage therapy. Acta Medica Indonesiana, 44, 62–68.

    PubMed  Google Scholar 

  2. Hong, H. S., Kim, Y. H., & Son, Y. (2012). Perspectives on mesenchymal stem cells: tissue repair, immune modulation, and tumor homing. Archives of Pharmacal Research, 35, 201–211.

    Article  PubMed  CAS  Google Scholar 

  3. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28, 585–596.

    PubMed  CAS  Google Scholar 

  4. Wang, K. X., & Denhardt, D. T. (2008). Osteopontin: role in immune regulation and stress responses. Cytokine & Growth Factor Reviews, 19, 333–345.

    Article  CAS  Google Scholar 

  5. Koh, A., et al. (2007). Role of osteopontin in neutrophil function. Immunology, 122, 466–475.

    Article  PubMed  CAS  Google Scholar 

  6. Zou, C., Song, G., Luo, Q., Yuan, L., & Yang, L. (2011). Mesenchymal stem cells require integrin beta1 for directed migration induced by osteopontin in vitro. In Vitro Cellular and Developmental Biology Animal, 47, 241–250.

    Article  PubMed  CAS  Google Scholar 

  7. Saleem, S., et al. (2009). beta1 integrin/FAK/ERK signalling pathway is essential for human fetal islet cell differentiation and survival. Journal of Pathology, 219, 182–192.

    Article  PubMed  CAS  Google Scholar 

  8. Cox, B. D., Natarajan, M., Stettner, M. R., & Gladson, C. L. (2006). New concepts regarding focal promotion of cell migration adhesion kinase and proliferation. Journal of Cellular Biochemistry, 99, 36–52.

    Article  CAS  Google Scholar 

  9. Weiner, T. M., Liu, E. T., Craven, R. J., & Cance, W. G. (1993). Expression of focal adhesion kinase gene and invasive cancer. Lancet, 342, 1024–1025.

    Article  PubMed  CAS  Google Scholar 

  10. Gilmore, A. P., & Romer, L. H. (1996). Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Molecular Biology of the Cell, 7, 1209–1224.

    PubMed  CAS  Google Scholar 

  11. Ilic, D., et al. (1995). Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 377, 539–544.

    Article  PubMed  CAS  Google Scholar 

  12. Li, J. J., Han, M., Wen, J. K., & Li, A. Y. (2007). Osteopontin stimulates vascular smooth muscle cell migration by inducing FAK phosphorylation and ILK dephosphorylation. Biochemical and Biophysical Research Communications, 356, 13–19.

    Article  PubMed  CAS  Google Scholar 

  13. Ramos, J. W. (2008). The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. International Journal of Biochemistry & Cell Biology, 40, 2707–2719.

    Article  CAS  Google Scholar 

  14. Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling–mechanisms and consequences. Current Opinion in Genetics & Development, 12, 30–35.

    Article  CAS  Google Scholar 

  15. Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117, 4619–4628.

    Article  PubMed  CAS  Google Scholar 

  16. Krueger, J. S., Keshamouni, V. G., Atanaskova, N., & Reddy, K. B. (2001). Temporal and quantitative regulation of mitogen-activated protein kinase (MAPK) modulates cell motility and invasion. Oncogene, 20, 4209–4218.

    Article  PubMed  CAS  Google Scholar 

  17. Kavurma, M. M., & Khachigian, L. M. (2003). ERK, JNK, and p38 MAP kinases differentially regulate proliferation and migration of phenotypically distinct smooth muscle cell subtypes. Journal of Cellular Biochemistry, 89, 289–300.

    Article  PubMed  CAS  Google Scholar 

  18. Shi, Y., et al. (2012). Neural cell adhesion molecule modulates mesenchymal stromal cell migration via activation of MAPK/ERK signaling. Experimental Cell Research, 318, 2257–2267.

    Article  PubMed  CAS  Google Scholar 

  19. Tang, J. M., et al. (2012). Acetylcholine induces mesenchymal stem cell migration via Ca2+/PKC/ERK1/2 signal pathway. Journal of Cellular Biochemistry, 113, 2704–2713.

    Article  PubMed  CAS  Google Scholar 

  20. Lautenschlager, F., et al. (2009). The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 15696–15701.

    Article  PubMed  Google Scholar 

  21. Cross, S. E., Jin, Y. S., Rao, J., & Gimzewski, J. K. (2007). Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology, 2, 780–783.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, H., Asimaki, A., Lo, D., McKenna, W., & Saffitz, J. (2008). Disparate effects of different mutations in plakoglobin on cell mechanical behavior. Cell Motility and the Cytoskeleton, 65, 964–978.

    Article  PubMed  CAS  Google Scholar 

  23. Luo, M., & Guan, J. L. (2010). Focal adhesion kinase: a prominent determinant in breast cancer initiation, progression and metastasis. Cancer Letters, 289, 127–139.

    Article  PubMed  CAS  Google Scholar 

  24. Miyazaki, K., et al. (2008). Corneal wound healing in an osteopontin-deficient mouse. Investigative Ophthalmology & Visual Science, 49, 1367–1375.

    Article  Google Scholar 

  25. Robertson, B. W., Bonsal, L., & Chellaiah, M. A. (2010). Regulation of Erk1/2 activation by osteopontin in PC3 human prostate cancer cells. Molecular Cancer, 9, 260.

    Article  PubMed  Google Scholar 

  26. Dai, J., et al. (2009). Osteopontin induces angiogenesis through activation of PI3 K/AKT and ERK1/2 in endothelial cells. Oncogene, 28, 3412–3422.

    Article  PubMed  CAS  Google Scholar 

  27. Brakebusch, C., & Fassler, R. (2005). Beta 1 integrin function in vivo: adhesion, migration and more. Cancer metastasis reviews, 24, 403–411.

    Article  PubMed  CAS  Google Scholar 

  28. Fong, Y. C., et al. (2009). Transforming growth factor-beta1 increases cell migration and beta1 integrin up-regulation in human lung cancer cells. Lung cancer, 64, 13–21.

    Article  PubMed  Google Scholar 

  29. Guck, J., Lautenschlager, F., Paschke, S., & Beil, M. (2010). Critical review: cellular mechanobiology and amoeboid migration. Integrative Biology, 2, 575–583.

    Article  PubMed  Google Scholar 

  30. Li, Q. S., Lee, G. Y., Ong, C. N., & Lim, C. T. (2008). AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 374, 609–613.

    Article  PubMed  CAS  Google Scholar 

  31. Hampton, T. (2008). Lessening of cell stiffness might serve as new biomarker for malignancy. The Journal of the American Medical Association, 299, 276.

    Article  CAS  Google Scholar 

  32. Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal, 78, 520–535.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural National Science Foundation of China (nos. 30770530, 11032012, 11102240 and 11272365), the Fundamental Research Funds for the Central University of China (no. CDJXS11232243), and the Natural Science Foundation Project of CQ CSTC (2010bb5236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanbin Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., Luo, Q., Qin, J. et al. Osteopontin Promotes Mesenchymal Stem Cell Migration and Lessens Cell Stiffness via Integrin β1, FAK, and ERK Pathways. Cell Biochem Biophys 65, 455–462 (2013). https://doi.org/10.1007/s12013-012-9449-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9449-8

Keywords

Navigation