Skip to main content
Log in

USP22 Acts as an Oncogene by the Activation of BMI-1-Mediated INK4a/ARF Pathway and Akt Pathway

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Recent studies provided strong support for the view that ubiquitin-specific protease 22 (USP22) plays a central role in cell-cycle progression and also in pathological processes such as oncogenesis. We have recently shown that USP22 levels are elevated in colorectal carcinoma with associated increase in the expression of several cell-cycle-related genes. However, the precise mechanism for these functions of USP22 at molecular level has not been fully elucidated. Currently, we investigated the role of USP22 in human colorectal cancer (CRC). We observed that USP22 expression was statistically significantly correlated positively with that of BMI-1, c-Myc and both, pAkt (Ser473), and pAkt (Thr308), in primary tumor tissues from 43 CRC patients. Down-regulation of USP22 expression in HCT116 colorectal cancer cells by siRNA resulted in the accumulation of cells in the G1 phase of the cell cycle. RNAi-knockdown of USP22 in HCT16 cells also led to the repression of BMI-1 and was accompanied by the up-regulation of p16INK4a and p14ARF, with a consequent decrease in E2F1 and p53 levels. In addition, down-regulation of c-Myc-targeted cyclin D2 was also noticed in cells treated with USP22-siRNA. Furthermore, our results showed that USP22 deletion also caused down-regulation of Akt/GSK3β activity, which can also contribute to the reduction of cyclin D2. Collectively, our current results suggest that USP22 may act as an oncogene in CRC as it positively regulates cell cycle via both BMI-1-mediated INK4a/ARF pathway and Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Glinsky, G. V., Berezovska, O., & Glinskii, A. B. (2005). Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. The Journal of Clinical Investigation, 115, 1503–1521.

    Article  PubMed  CAS  Google Scholar 

  2. Glinsky, G. V. (2006). Integration of HapMap-based SNP pattern analysis and gene expression profiling reveals common SNP profiles for cancer therapy outcome predictor genes. Cell cycle, 5, 2613–2625.

    Article  PubMed  CAS  Google Scholar 

  3. Glinsky, G. V. (2008). “Stemness” genomics law governs clinical behavior of human cancer: Implications for decision making in disease management. Journal of Clinical Oncology, 26, 2846–2853.

    Article  PubMed  Google Scholar 

  4. Glinsky, G. V. (2006). Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle, 5, 1208–1216.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, H. J., Kim, M. S., Shin, J. M., Park, T. J., Chung, H. M., & Baek, K. H. (2006). The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expression Patterns, 6, 277–284.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, Y., Lang, G., Ito, S., Bonnet, J., Metzger, E., Sawatsubashi, S., et al. (2008). A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Molecular Cell, 29, 92–101.

    Article  PubMed  CAS  Google Scholar 

  7. Pijnappel, W. W., & Timmers, H. T. (2008). Dubbing SAGA unveils new epigenetic crosstalk. Molecular Cell, 29, 152–154.

    Article  PubMed  CAS  Google Scholar 

  8. Zhang, X. Y., Varthi, M., Sykes, S. M., Phillips, C., Warzecha, C., Zhu, W., et al. (2008). The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Molecular Cell, 29, 102–111.

    Article  PubMed  Google Scholar 

  9. Zhang, X. Y., Pfeiffer, H. K., Thorne, A. W., & McMahon, S. B. (2008). USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle, 7, 1522–1524.

    Article  PubMed  CAS  Google Scholar 

  10. Berezovska, O. P., Glinskii, A. B., Yang, Z., Li, X. M., Hoffman, R. M., & Glinsky, G. V. (2006). Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle, 5, 1886–1901.

    Article  PubMed  CAS  Google Scholar 

  11. Kenney, A. M., Cole, M. D., & Rowitch, D. H. (2003). Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development, 130, 15–28.

    Article  PubMed  CAS  Google Scholar 

  12. Guo, W. J., Datta, S., Band, V., & Dimri, G. P. (2007). Mel-18, a polycomb group protein, regulates cell proliferation and senescence via transcriptional repression of Bmi-1 and c-Myc oncoproteins. Molecular Biology of the Cell, 18, 536–546.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, J. H., Yoon, S. Y., Kim, C. N., Joo, J. H., Moon, S. K., Choe, I. S., et al. (2004). The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Letters, 203, 217–224.

    Article  PubMed  CAS  Google Scholar 

  14. Sherr, C. J. (2001). The INK4a/ARF network in tumour suppression. Nature Reviews Molecular Cell Biology, 2, 731–737.

    Article  PubMed  CAS  Google Scholar 

  15. Carthon, B. C., Neumann, C. A., Das, M., Pawlyk, B., Li, T., Geng, Y., et al. (2005). Genetic replacement of cyclin D1 function in mouse development by cyclin D2. Molecular and Cellular Biology, 25, 1081–1088.

    Article  PubMed  CAS  Google Scholar 

  16. Guo, W. J., Zeng, M. S., Yadav, A., Song, L. B., Guo, B. H., Band, V., et al. (2007). Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Research, 67, 5083–5089.

    Article  PubMed  CAS  Google Scholar 

  17. Fan, C., He, L., Kapoor, A., Rybak, A. P., De Melo, J., Cutz, J. C., et al. (2009). PTEN inhibits BMI1 function independently of its phosphatase activity. Molecular Cancer, 8, 98.

    Article  PubMed  Google Scholar 

  18. Song, L. B., Li, J., Liao, W. T., Feng, Y., Yu, C. P., Hu, L. J., et al. (2009). The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. ****Journal of Clinical Investigation, 119, 3626–3636.

    Article  PubMed  CAS  Google Scholar 

  19. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Reviews Cancer, 2, 489–501.

    Article  PubMed  CAS  Google Scholar 

  20. Kida, A., Kakihana, K., Kotani, S., Kurosu, T., & Miura, O. (2007). Glycogen synthase kinase-3beta and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene, 26, 6630–6640.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, S., Dontu, G., Mantle, I. D., Patel, S., Ahn, N. S., Jackson, K. W., et al. (2006). Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Research, 66, 6063–6071.

    Article  PubMed  CAS  Google Scholar 

  22. Lessard, J., & Sauvageau, G. (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260.

    Article  PubMed  CAS  Google Scholar 

  23. Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.

    Article  PubMed  CAS  Google Scholar 

  24. Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A., & van Lohuizen, M. (1999). The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 397, 164–168.

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs, J. J., Scheijen, B., Voncken, J. W., Kieboom, K., Berns, A., & van Lohuizen, M. (1999). Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes and Development, 13, 2678–2690.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Doctoral Program Foundation of Institutions of Higher Education of China (Grant #20102307110011) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Shan Wang.

Additional information

Yan-Long Liu and Shi-Xiong Jiang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YL., Jiang, SX., Yang, YM. et al. USP22 Acts as an Oncogene by the Activation of BMI-1-Mediated INK4a/ARF Pathway and Akt Pathway. Cell Biochem Biophys 62, 229–235 (2012). https://doi.org/10.1007/s12013-011-9287-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9287-0

Keywords

Navigation