Skip to main content
Log in

Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Introduction

Zinc is an important essential micronutrient with anti-oxidative and anti-inflammatory properties in humans. The role of zinc in signalling has been characterized in the nervous, endocrine, gastrointestinal, renal and reproductive systems. Relatively little is known regarding its role in the vascular system, but the role of zinc homeostasis in augmenting vascular health and vasorelaxation is emerging. Zinc transport proteins are integral to the protective function of zinc, but knowledge of their expression in vascular endothelial and smooth muscle cells is lacking.

Methodology

Human coronary artery endothelial cells and pulmonary artery smooth muscle cells were assessed for gene expression (RT-PCR) of SLC39A (ZIP), SLC30A (ZnT) and metallothionein (MT) families of Zn transporters and storage proteins. Protein expression (fluorescence confocal microscopy) was then analysed for the proteins of interest that changed mRNA expression: ZIP2, ZIP12, ZnT1, ZnT2 and MT1/2.

Results

Endothelial and smooth muscle cell mRNA expression of ZnT1, ZnT2 and MT1 was significantly downregulated by low and high Zn conditions, while ZIP2 and ZIP12 expression was induced by Zn depletion with the Zn chelator, TPEN. Changes in gene expression were consistent with protein expression levels for ZIP2, ZIP12 and MT1, where ZIP2 was localized to intracellular bodies and ZIP12 to lamellipodia.

Conclusion

Vascular endothelial and smooth muscle cells actively regulate specific Zn transport and metallothionein gene and protein expressions to achieve Zn homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ZnT:

Zinc transporter

ZIP:

Zrt- and Irt-like protein

MT:

Metallothionein

XIAP:

X-linked inhibitor of apoptosis protein

RAC1:

Ras-related C3 botulinum toxin substrate 1

HCAEC:

Human coronary artery endothelial cells

HPASMC:

Human pulmonary artery endothelial cells

CVD:

Cardiovascular disease

TPEN:

N,N,N′,N′-Tetrakis(2-pyridinylmethyl)-1,2-ethanediamine

References

  1. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201. https://doi.org/10.1021/pr050361j

    Article  CAS  PubMed  Google Scholar 

  2. Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19(3):215–240. https://doi.org/10.1111/j.1476-4431.2009.00418.x

    Article  Google Scholar 

  3. Singh RB, Niaz MA, Rastogi SS, Bajaj S, Zhang GL, Zhu SM (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of north India. J Am Coll Nutr 17(6):564–570. https://doi.org/10.1080/07315724.1998.10718804

    Article  CAS  PubMed  Google Scholar 

  4. Giacconi R, Cipriano C, Muti E, Costarelli L, Malavolta M, Caruso C, Lio D, Mocchegiani E (2006) Involvement of-308 TNF-alpha and 1267 Hsp70-2 polymorphisms and zinc status in the susceptibility of coronary artery disease (CAD) in old patients. Biogerontology 7(5-6):347–356. https://doi.org/10.1007/s10522-006-9049-3

    Article  CAS  PubMed  Google Scholar 

  5. Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc rransporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784. https://doi.org/10.1152/physrev.00035.2014

    Article  CAS  PubMed  Google Scholar 

  6. Krezel A, Maret W (2017) The functions of metamorphic metallothioneins in zinc and copper metabolism. Int J Mol Sci 18(6):1237. https://doi.org/10.3390/ijms18061237

    Article  CAS  PubMed Central  Google Scholar 

  7. Fujie T, Segawa Y, Yoshida E, Kimura T, Fukiwara Y, Yamamoto C, Satoh M, Naka H, Kaji T (2016) Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells. J Toxicol Sci 41(2):225–232. https://doi.org/10.2131/jts.41.225

    Article  CAS  PubMed  Google Scholar 

  8. Conway DE, Lee S, Eskin SG, Shah AK, Jo H, McIntire LV (2010) Endothelial metallothionein expression and intracellular free zinc levels are regulated by shear stress. Am J Physiol Cell Physiol 299(6):C1461–C1467. https://doi.org/10.1152/ajpcell.00570.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schulkens IA, Castricum KC, Weijers EM, Koolwijk P, Griffioen AW, Thijssen VL (2014) Expression, regulation and function of human metallothioneins in endothelial cells. J Vasc Res 51(3):231–238. https://doi.org/10.1159/000365550

    Article  CAS  PubMed  Google Scholar 

  10. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD (1994) Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33(23):7250–7259. https://doi.org/10.1021/bi00189a029‚

    Article  CAS  PubMed  Google Scholar 

  11. Zhao L, Oliver E, Maratou K, Atanur SS, Dubois OD, Cotroneo E, Chen CN, Wang L, Arce C, Chabosseau PL, Ponsa-Cobas J, Frid MG, Moyon B, Webster Z, Aldashev A, Ferrer J, Rutter GA, Stenmark KR, Aitman TJ, Wilkins MR (2015) The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia. Nature 524(7565):356–360. https://doi.org/10.1038/nature14620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malavolta M, Costarelli L, Giacconi R, Basso A, Piacenza F, Pierpaoli E, Provinciali M, Ogo OA, Ford D (2017) Changes in Zn homeostasis during long term culture of primary endothelial cells and effects of Zn on endothelial cell senescence. Exp Gerontol 99:35–45. https://doi.org/10.1016/j.exger.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  13. Murgia C, Devirgiliis C, Mancini E, Donadel G, Zalewski P, Perozzi G (2009) Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 19(6):431–439. https://doi.org/10.1016/j.numecd.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  14. Bosco MD, Mohanasundaram DM, Drogemuller CJ, Lang CJ, Zalewski PD, Coates PT (2010) Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev Diabet Stud 7(4):263–274. https://doi.org/10.1900/RDS.2010.7.263

    Article  PubMed  Google Scholar 

  15. Jayaram L, Chunilal S, Pickering S, Ruffin RE, Zalewski PD (2011) Sputum zinc concentration and clinical outcome in older asthmatics. Respirology 16(3):459–466. https://doi.org/10.1111/j.1440-1843.2011.01932.x

    Article  PubMed  Google Scholar 

  16. Hamon R, Homan CC, Tran HB, Mukaro VR, Lester SE, Roscioli E, Bosco MD, Murgia CM, Ackland ML, Jersmann HP, Lang C, Zalewski PD, Hodge SJ (2014) Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD. PLoS One 9(10):e110056. https://doi.org/10.1371/journal.pone.0110056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roscioli E, Tran HB, Jersmann H, Nguyen PT, Hopkins E, Lester S, Farrow N, Zalewski P, Reynolds PN, Hodge S (2017) The uncoupling of autophagy and zinc homeostasis in airway epithelial cells as a fundamental contributor to COPD. Am J Physiol Lung Cell Mol Physiol 313(3):L453–L465. https://doi.org/10.1152/ajplung.00083.2017

    Article  PubMed  Google Scholar 

  18. Kamei S, Fujikawa H, Nohara H, Ueno-Shuto K, Maruta K, Nakashima R, Kawakami T, Matsumoto C, Sakaguchi Y, Ono T, Suico MA, Boucher RC, Gruenert DC, Takeo T, Nakagata N, Li JD, Kai H, Shuto T (2018) Zinc deficiency via a splice switch in zinc importer ZIP2/SLC39A2 causes cystic fibrosisa-asociated MUC5AC hypersecretion in airway epithelial cells. EBioMedicine 27:304–316. https://doi.org/10.1016/j.ebiom.2017.12.025

    Article  PubMed  Google Scholar 

  19. Tran HB, Lewis MD, Tan LW, Lester SE, Baker LM, Ng J, Hamilton-Bruce MA, Hill CL, Koblar SA, Rischmueller M, Ruffin RE, Wormald PJ, Zalewski PD, Lang CJ (2012) Immunolocalization of NLRP3 inflammasome in normal murine airway epithelium and changes following induction of ovalbumin-induced airway inflammation. J Allergy 2012:819176–819113. https://doi.org/10.1155/2012/819176

    Article  CAS  Google Scholar 

  20. AbdulWahab A, Abushahin A, Allangawi M, Chandra P, Abdel Rahman MO, Soliman A (2017) Serum zinc concentration in cystic fibrosis patients with CFTR I1234V mutation associated with pancreatic sufficiency. Clin Respir J 11(3):305–310. https://doi.org/10.1111/crj.12335

    Article  CAS  PubMed  Google Scholar 

  21. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9):2330–2337. https://doi.org/10.2337/diabetes.53.9.2330

    Article  CAS  PubMed  Google Scholar 

  22. Roscioli E, Hamon R, Lester S, Murgia C, Grant J, Zalewski P (2013) Zinc-rich inhibitor of apoptosis proteins (IAPs) as regulatory factors in the epithelium of normal and inflamed airways. Biometals 26(2):205–227. https://doi.org/10.1007/s10534-013-9618-2

    Article  CAS  PubMed  Google Scholar 

  23. Cascone I, Giraudo E, Caccavari F, Napione L, Bertotti E, Collard JG, Serini G, Bussolino F (2003) Temporal and spatial modulation of Rho GTPases during in vitro formation of capillary vascular network. Adherens junctions and myosin light chain as targets of Rac1 and RhoA. J Biol Chem 278(50):50702–50713. https://doi.org/10.1074/jbc.M307234200

    Article  CAS  PubMed  Google Scholar 

  24. Langmade SJ, Ravindra R, Daniels PJ, Andrews GK (2000) The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275(44):34803–34809. https://doi.org/10.1074/jbc.M007339200

    Article  CAS  PubMed  Google Scholar 

  25. Hardyman JE, Tyson J, Jackson KA, Aldridge C, Cockell SJ, Wakeling LA, Valentine RA, Ford D (2016) Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc. Metallomics 8(3):337–343. https://doi.org/10.1039/c5mt00305a

    Article  CAS  PubMed  Google Scholar 

  26. Giedroc DP, Chen X, Apuy JL (2001) Metal response element (MRE)-binding transcription factor-1 (MTF-1): Structure, function, and regulation. Antioxid Redox Signal 3(4):577–596. https://doi.org/10.1089/15230860152542943

    Article  CAS  PubMed  Google Scholar 

  27. Cortese-Krott MM, Kulakov L, Oplander C, Kolb-Bachofen V, Kroncke KD, Suschek CV (2014) Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2:945–954. https://doi.org/10.1016/j.redox.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reis BZ, Vieira D, Maynard DDC, Silva DGD, Mendes-Netto RS, Cozzolino SMF (2020) Zinc nutritional status influences ZnT1 and ZIP4 gene expression in children with a high risk of zinc deficiency. J Trace Elem Med Biol 61:126537. https://doi.org/10.1016/j.jtemb.2020.126537

    Article  CAS  PubMed  Google Scholar 

  29. Heger Z, Rodrigo MAM, Krizkova S, Ruttkay-Nedecky B, Zalewska M, del Pozo EMP, Pelfrene A, Pourrut B, Stiborova M, Eckschlager T, Emri G, Kizek R, Adam V (2016) Metallothionein as a scavenger of free radicals - New cardioprotective therapeutic agent or initiator of tumor chemoresistance? Curr Drug Targets 17(12):1438–1451. https://doi.org/10.2174/1389450116666151001113304

    Article  CAS  PubMed  Google Scholar 

  30. Maarman GJ (2018) Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 214:77–83. https://doi.org/10.1016/j.lfs.2018.10.039

    Article  CAS  PubMed  Google Scholar 

  31. Shusterman E, Beharier O, Shiri L, Zarivach R, Etzion Y, Campbell CR, Lee IH, Okabayashi K, Dinudom A, Cook DI, Katz A, Moran A (2014) ZnT-1 extrudes zinc from mammalian cells functioning as a Zn2+/H+ exchanger. Metallomics 6(9):1656–1663. https://doi.org/10.1039/c4mt00108g

    Article  CAS  PubMed  Google Scholar 

  32. Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15(8):1784–1791. https://doi.org/10.1002/j.1460-2075.1996.tb00527.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Segal D, Ohana E, Besser L, Hershfinkel M, Moran A, Sekler I (2004) A role for ZnT-1 in regulating cellular cation influx. Biochem Biophys Res Commun 323(4):1145–1150. https://doi.org/10.1016/j.bbrc.2004.08.211

    Article  CAS  PubMed  Google Scholar 

  34. Levy S, Beharier O, Etzion Y, Mor M, Buzaglo L, Shaltiel L, Gheber LA, Kahn J, Muslin AJ, Katz A, Gitler D, Moran A (2009) Molecular basis for zinc transporter 1 action as an endogenous inhibitor of L-type calcium channels. J Biol Chem 284(47):32434–32443. https://doi.org/10.1074/jbc.M109.058842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shusterman E, Beharier O, Levy S, Zarivach R, Etzion Y, Campbell CR, Lee IH, Dinudom A, Cook DI, Peretz A, Katz A, Gitler D, Moran A (2017) Zinc transport and the inhibition of the L-type calcium channel are two separable functions of ZnT-1. Metallomics 9(3):228–238. https://doi.org/10.1039/c6mt00296j

    Article  CAS  PubMed  Google Scholar 

  36. Ohana E, Sekler I, Kaisman T, Kahn N, Cove J, Silverman WF, Amsterdam A, Hershfinkel M (2006) Silencing of ZnT-1 expression enhances heavy metal influx and toxicity. J Mol Med 84(9):753–763. https://doi.org/10.1007/s00109-006-0062-4

    Article  CAS  PubMed  Google Scholar 

  37. Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF (2009) Heterogeneity of L- and T-channels in the vasculature: rationale for the efficacy of combined L- and T-blockade. Hypertension 53(4):654–660. https://doi.org/10.1161/HYPERTENSIONAHA.108.125831

    Article  CAS  PubMed  Google Scholar 

  38. Patrushev N, Seidel-Rogol B, Salazar G (2012) Angiotensin II requires zinc and downregulation of the zinc transporters ZnT3 and ZnT10 to induce senescence of vascular smooth muscle cells. PLoS One 7(3):e33211. https://doi.org/10.1371/journal.pone.0033211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giacconi R, Muti E, Malavolta M, Cardelli M, Pierpaoli S, Cipriano C, Costarelli L, Tesei S, Saba V, Mocchegiani E (2008) A novel Zip2 Gln/Arg/Leu codon 2 polymorphism is associated with carotid artery disease in aging. Rejuv Res 11(2):297–300. https://doi.org/10.1089/rej.2008.0671

    Article  CAS  Google Scholar 

  40. Cousins RJ, Blanchard RK, Popp MP, Liu L, Cao J, Moore JB, Green CL (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci U S A 100(12):6952–6957. https://doi.org/10.1073/pnas.0732111100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maret W (2017) Zinc in cellular regulation: the nature and significance of "zinc signals". Int J Mol Sci 18(11):2285. https://doi.org/10.3390/ijms18112285

    Article  CAS  PubMed Central  Google Scholar 

  42. Gaither LA, Eide DJ (2000) Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275(8):5560–5564. https://doi.org/10.1074/jbc.275.8.5560

    Article  CAS  PubMed  Google Scholar 

  43. Lowenstein CJ, Morrell CN, Yamakuchi M (2005) Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 15(8):302–308. https://doi.org/10.1016/j.tcm.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  44. Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V (2018) Sphingolipids signaling in lamellipodia formation and enhancement of endothelial barrier function. Curr Top Membr 82:1–31. https://doi.org/10.1016/bs.ctm.2018.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jackson KA, Valentine RA, Coneyworth LJ, Mathers JC, Ford D (2008) Mechanisms of mammalian zinc-regulated gene expression. Biochem Soc Trans 36(Pt 6):1262–1266. https://doi.org/10.1042/BST0361262

    Article  CAS  PubMed  Google Scholar 

  46. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67(2):283–301. https://doi.org/10.1007/s12576-017-0521-4

    Article  CAS  PubMed  Google Scholar 

  47. Zalewski PD, Beltrame JF, Wawer AA, Abdo AI, Murgia C (2018) Roles for endothelial zinc homeostasis in vascular physiology and coronary artery disease. Crit Rev Food Sci Nutr 59(21):3511–3525. https://doi.org/10.1080/10408398.2018.1495614

    Article  CAS  PubMed  Google Scholar 

  48. Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71(17):3281–3295. https://doi.org/10.1007/s00018-014-1617-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Health and Medical Research Council (Project number APP1138917). The funders had no role in the study design, data collection, analysis or interpretation, manuscript preparation or decision to publish.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adrian I. Abdo or Peter D. Zalewski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdo, A.I., Tran, H.B., Hodge, S. et al. Zinc Homeostasis Alters Zinc Transporter Protein Expression in Vascular Endothelial and Smooth Muscle Cells. Biol Trace Elem Res 199, 2158–2171 (2021). https://doi.org/10.1007/s12011-020-02328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02328-z

Keywords

Navigation