Skip to main content
Log in

The RPTEC/TERT1 Cell Line as an Improved Tool for In Vitro Nephrotoxicity Assessments

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In earlier studies, we have characterized a newly developed cell line derived from the renal proximal tubule epithelial cells (RPTEC) of a healthy human male donor in order to provide an improved in vitro model with which to investigate human diseases, such as cancer, that may be promoted by toxicant exposure. The RPTEC/TERT1 cell line has been immortalized using the human telomerase reverse transcriptase (hTERT) catalytic subunit and does not exhibit chromosomal abnormalities (Evercyte Laboratories). We have previously conducted single-compound and binary mixture experiments with the common environmental carcinogens, cadmium (Cd), and benzo[a]pyrene (B[a]P). Cells exhibited cytotoxic and compound-specific responses to low concentrations of B[a]P and Cd. We detected responses after exposure consistent with what is known regarding these cells in a normal, healthy kidney including significant gene expression changes, BPDE-DNA adducts in the presence of B[a]P, and indications of oxidative stress in the presence of Cd. The RPTEC/TERT1 cell line was also amenable to co-exposure studies due to its sensitivity and compound-specific properties. Here, we review our earlier work, compare our findings with commonly used renal cell lines, and suggest directions for future experiments. We conclude that the RPTEC/TERT1 cell line can provide a useful tool for future toxicological and mixture studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Howlader N, Noone AM, Krapcho M et al. SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. based on November 2013 SEER data submission, posted to the SEER web site, April 2014

  2. American Cancer Society (2012) Cancer facts and figures. American Cancer Society, Atlanta, pp 1–68

  3. Arjumand W, Sultana S (2012) Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol 33:9–16. doi:10.1007/s13277-011-0257-3

    Article  CAS  PubMed  Google Scholar 

  4. Linehan WM, Rubin JS, Bottaro DP (2009) VHL loss of function and its impact on oncogenic signaling networks in clear cell renal cell carcinoma. Int J Biochem Cell Biol 41:753–756. doi:10.1016/j.biocel.2008.09.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Grieb SMD, Theis RP, Burr D et al (2009) Food groups and renal cell carcinoma: results from a case–control study. J Am Diet Assoc 109:656–667. doi:10.1016/j.jada.2008.12.020

    Article  PubMed  Google Scholar 

  6. Prasad SR, Narra VR, Shah R et al (2007) Segmental disorders of the nephron: histopathological and imaging perspective. Br J Radiol 80:593–602. doi:10.1259/bjr/20129205

    Article  CAS  PubMed  Google Scholar 

  7. Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335:865–875. doi:10.1056/NEJM199609193351207

    Article  CAS  PubMed  Google Scholar 

  8. Lohr JW, Willsky GR, Acara MA (1998) Renal drug metabolism. Pharmacol Rev 50:107–141

    CAS  PubMed  Google Scholar 

  9. (2012) IARC Monographs on the evaluations of carcinogenic risks to humans. A review of human carcinogens: chemical agents and related occupations. 111–138

  10. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res 24:378–399. doi:10.1080/09603123.2013.835032

    Article  CAS  PubMed  Google Scholar 

  11. Il'yasova D, Schwartz GG (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207:179–186. doi:10.1016/j.taap.2004.12.005

    Article  PubMed  Google Scholar 

  12. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res Fundam Mol Mech Mutagen 533:107–120. doi:10.1016/j.mrfmmm.2003.07.011

    Article  CAS  Google Scholar 

  13. Moulis J-M, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals Int J Role Met Ions Biol biochem Med. doi:10.1007/s10534-010-9365-6

    Google Scholar 

  14. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238:272–279. doi:10.1016/j.taap.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  15. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. doi:10.1016/j.taap.2009.04.020

    Article  PubMed  Google Scholar 

  16. Chen Y-C, Pu YS, Wu H-C et al (2009) Cadmium burden and the risk and phenotype of prostate cancer. BMC Cancer 9:429. doi:10.1186/1471-2407-9-429

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kriegel AM, Soliman AS, Zhang Q, et al. (2005) Serum cadmium levels in pancreatic cancer patients from the East Nile Delta Region of Egypt. Environ Health Perspect 1–7. doi:10.1289/ehp.8035

  18. Huff J, Lunn RM, Waalkes MP et al (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202–212. doi:10.1179/oeh.2007.13.2.202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275. doi:10.1016/j.cbi.2010.03.040

    Article  CAS  PubMed  Google Scholar 

  20. Singh KP, Kumari R, Pevey C et al (2009) Long duration exposure to cadmium leads to increased cell survival, decreased DNA repair capacity, and genomic instability in mouse testicular Leydig cells. Cancer Lett 279:84–92. doi:10.1016/j.canlet.2009.01.023

    Article  CAS  PubMed  Google Scholar 

  21. Takiguchi M, Achanzar WE, Qu W, et al. (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 1–11. doi: 10.1016/S0014-4827(03)00062-4

  22. Hartwig A, Schwerdtle T (2002) Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications. Toxicol Lett 127:47–54

    Article  CAS  PubMed  Google Scholar 

  23. Zhou T, Jia X, Chapin RE et al (2004) Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol Lett 154:191–200. doi:10.1016/j.toxlet.2004.07.015

    Article  CAS  PubMed  Google Scholar 

  24. Kopera E, Schwerdtle T, Hartwig A, Ba W (2004) Co(II) and Cd(II) substitute for Zn(II) in the zinc finger derived from the DNA repair protein XPA, demonstrating a variety of potential mechanisms of toxicity. Chem Res Toxicol 17:1452–1458

    Article  CAS  PubMed  Google Scholar 

  25. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190. doi:10.1289/ehp.0901234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schwerdtle T, Ebert F, Thuy C et al (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23:432–442. doi:10.1021/tx900444w

    Article  CAS  PubMed  Google Scholar 

  27. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512. doi:10.1007/s00204-008-0313-y

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Cao J, Chen D et al (2009) Role of oxidative stress, apoptosis, and intracellular homeostasis in primary cultures of rat proximal tubular cells exposed to cadmium. Biol Trace Elem Res 127:53–68. doi:10.1007/s12011-008-8223-7

    Article  CAS  PubMed  Google Scholar 

  29. Martin P, Pognonec P (2010) ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS J 277:39–46. doi:10.1111/j.1742-4658.2009.07369.x

    Article  CAS  PubMed  Google Scholar 

  30. IARC Working Group on the evaluation of carcinogenic risks to humans (2009) A review of human carcinogens. Part C: Arsenic, metals, fibres, and dusts. http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf. Accessed 14 Dec 2014

  31. Klassen CD Casarett and Doull’s toxicology: the basic science of poisons, 7 ed. McGraw Hill, New York, New York

  32. Agency for Toxic Substances Disease Registry (2013) Priority list of hazardous substances. http://www.atsdr.cdc.gov/spl/index.html. Accessed 14 Apr 2015

  33. Daniel CR, Schwartz KL, Colt JS et al (2011) Meat-cooking mutagens and risk of renal cell carcinoma. Br J Cancer 105:1096–1104. doi:10.1038/bjc.2011.343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Daniel CR, Cross AJ, Graubard BI et al (2012) Large prospective investigation of meat intake, related mutagens, and risk of renal cell carcinoma. Am J Clin Nutr 95:155–162. doi:10.3945/ajcn.111.019364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Shimada T, Fujii-Kuriyama Y (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95:1–6

    Article  CAS  PubMed  Google Scholar 

  36. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93. doi:10.1016/j.taap.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  37. Lagerqvist A, Håkansson D, Lundin C et al (2011) DNA repair and replication influence the number of mutations per adduct of polycyclic aromatic hydrocarbons in mammalian cells. DNA Repair 10:877–886. doi:10.1016/j.dnarep.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  38. Yeager TR, Reddel RR (1999) Constructing immortalized human cell lines. Curr Opin Biotechnol 10:465–469

    Article  CAS  PubMed  Google Scholar 

  39. Wieser M, Stadler G, Jennings P et al (2008) hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. AJP: Renal Physiol 295:F1365–F1375. doi:10.1152/ajprenal.90405.2008

    CAS  Google Scholar 

  40. Nugent CI, Lundblad V (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12:1073–1085

    Article  CAS  PubMed  Google Scholar 

  41. Simon BR, Wilson MJ, Wickliffe JK (2014) The RPTEC/TERT1 cell line models key renal cell responses to the environmental toxicants, benzo [a] pyrene and cadmium. Toxicol Rep. doi:10.1016/j.toxrep.2014.05.010

    PubMed Central  Google Scholar 

  42. Simon BR, Wilson MJ, Blake DA et al (2014) Cadmium alters the formation of benzy[a]pyrene DNA adducts in the RPTEC/TERT1 human renal proximal tubule epithelial cell line. Toxicol Rep 1:391–400. doi:10.1016/j.toxrep.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  43. Barouki R, Aggerbeck M, Aggerbeck L, Coumoul X (2012) The aryl hydrocarbon receptor system. Drug Metabol Drug Interact 27:3–8. doi:10.1515/dmdi-2011-0035

    Article  CAS  PubMed  Google Scholar 

  44. Wilmes A, Crean D, Aydin S et al (2011) Identification and dissection of the Nrf2 mediated oxidative stress pathway in human renal proximal tubule toxicity. Toxicol In Vitro 25:613–622. doi:10.1016/j.tiv.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  45. Cucu D, D'Haese PC, De Beuf A, Verhulst A (2011) Low doses of cadmium chloride and methallothionein-1-bound cadmium display different accumulation kinetics and induce different genes in cells of the human nephron. Nephron Extra 1:24–37. doi:10.1159/000330069

    Article  PubMed Central  PubMed  Google Scholar 

  46. Li Y, Oo ZY, Chang SY et al (2013) An in vitro method for the prediction of renal proximal tubular toxicity in humans. Toxicol Res 2:352. doi:10.1039/c3tx50042j

    Article  CAS  Google Scholar 

  47. Kim D, Garrett SH, Sens MA et al (2002) Metallothionein isoform 3 and proximal tubule vectorial active transport. Kidney Int 61:464–472. doi:10.1046/j.1523-1755.2002.00153.x

    Article  CAS  PubMed  Google Scholar 

  48. Sipes IG, McQueen CA, Gandolfi AJ (1997) Comprehensive toxicology. Elsevier, Oxford

Download references

Funding

Funding was provided in part by a generous grant from the Baton Rouge Area Foundation, Baton Rouge, LA.

Funding was provided in part by a grant and cooperative agreement from the NIH/NIEHS 1U19ES20677-01. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS or NIH.

Funding and support was provided in part by the Tulane Cancer Center and the Louisiana Cancer Research Consortium.

This work was supported in part by the Gulf Region Health Outreach Program (GRHOP), which is funded by the Deepwater Horizon Medical Benefits Class Action Settlement approved by the US District Court in New Orleans on January 11, 2013.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey K. Wickliffe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon-Friedt, B.R., Wilson, M.J., Blake, D.A. et al. The RPTEC/TERT1 Cell Line as an Improved Tool for In Vitro Nephrotoxicity Assessments. Biol Trace Elem Res 166, 66–71 (2015). https://doi.org/10.1007/s12011-015-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0339-y

Keywords

Navigation