Skip to main content
Log in

Jeju Ground Water Containing Vanadium Enhances Antioxidant Systems in Human Liver Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Vanadium compounds have shown promise in the treatment of diabetes and in cancer prevention. The aim of this study is to investigate the effects of Jeju ground water, containing the vanadium compounds S1 (8.0 ± 0.9 μg/l) and S3 (26.0 ± 2.0 μg/l), and of vanadyl sulfate (VOSO4, 26 μg/l) on antioxidant systems in human Chang liver cells. Cells were incubated for ten passages in media containing deionized distilled water, Jeju ground water (S1, S3), or VOSO4. S1 and S3 increased the gene and protein expression and the enzymatic activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase. VOSO4 was likewise found to improve mRNA and protein expression as well as the activities of these enzymes. Taken together, these results suggest that the antioxidant properties of Jeju ground water, containing vanadium compounds, and of vanadyl sulfate were due to stimulatory effects on antioxidant enzyme activities and antioxidant enzyme expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fenech M, Ferguson LR (2001) Vitamins/minerals and genomic stability in humans. Mutat Res 475:1–6

    Article  PubMed  CAS  Google Scholar 

  2. Barceloux DG (1999) Vanadium. J Toxicol Clin Toxicol 37:265–278

    Article  PubMed  CAS  Google Scholar 

  3. Byrne AR, Kosta L (1978) Vanadium in foods and in human body fluids and tissues. Sci Total Environ 10:17–30

    Article  PubMed  CAS  Google Scholar 

  4. Evangelou AM (2002) Vanadium in cancer treatment. Crit Rev Oncol Hematol 42:249–265

    Article  PubMed  Google Scholar 

  5. Djordjevic C (1995) Antitumor activity of vanadium compounds. Met Ions Biol Syst 31:595–616

    PubMed  CAS  Google Scholar 

  6. Crans DC, Bunch RJ, Theisen LA (1989) Interaction of trace levels of vanadium (IV) and vanadium (V) in biological system. J Am Chem Soc 111:7597–7607

    Article  CAS  Google Scholar 

  7. Bishayee A, Chatterjee M (1995) Time course effects of vanadium supplement on cytosolic reduced glutathione level and glutathione S-transferase activity. Biol Trace Element Res 48:275–285

    Article  CAS  Google Scholar 

  8. Mukherjee B, Patra B, Mahapatra S et al (2004) Vanadium—an element of atypical biological significance. Toxicol Lett 150:135–143

    Article  PubMed  CAS  Google Scholar 

  9. Bolkent S, Bolkent S, Yanardag R, Tunali S (2005) Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 70:103–109

    Article  PubMed  CAS  Google Scholar 

  10. Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K, Yasui H (2002) Antidiabetic vanadium(IV) and zinc(II) complexes. Coord Chem Rev 226:187–198

    Article  CAS  Google Scholar 

  11. Thompson KH, Orvig C (2006) Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 100:1925–1935

    Article  PubMed  CAS  Google Scholar 

  12. Thompson KH, Lichter J, LeBel C et al (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  PubMed  CAS  Google Scholar 

  13. Hamada T (1998) High vanadium content in Mount Fuji groundwater and its relevance to the ancient biosphere. Vanadium in the environment: Part 1, Chemistry and biochemistry, New York, NY, pp 97–123

  14. Rehder D (2008) Bioinorganic vanadium chemistry. Wiley, Chichester, pp 105–128

    Book  Google Scholar 

  15. Hwang S, Chang HW (2011) Natural vanadium-containing Jeju ground water stimulates glucose uptake through the activation of AMP-activated protein kinase in L6 myotubes. Mol Cell Biochem (in press)

  16. Kim AD, Kang KA, Zhang R et al (2010) Reactive oxygen species scavenging effects of Jeju waters containing vanadium components. Cancer Prev Res (Seoul) 15:111–117

    Google Scholar 

  17. Kim AD, Kang KA, Zhang R et al (2010) Effects of Jeju water containing vanadium on antioxidant enzymes in vitro. Cancer Prev Res (Seoul) 15:262–267

    Google Scholar 

  18. Kim AD, Kang KA, Zhang R et al (2011) Antioxidant enzyme-enhancing effects of Jeju water containing vanadium in vivo. Cancer Prev Res (Seoul) 16:58–64

    Google Scholar 

  19. Park S, Hyun JW, You HJ (2011) Jeju ground water attenuates adipogenesis in 3T3-L1 preadipocytes. Cancer Prev Res (Seoul) 16:231–237

    Google Scholar 

  20. Ha D, Kim MJ, Joo H et al (2011) Immune activation of Jeju water containing vanadium on peripheral immunocytes of low dose gamma rays-irradiated mice. Kor J Vet Publ Hlth 35:49–59

    Google Scholar 

  21. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  22. McCord JM (1974) Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185:529–531

    Article  PubMed  CAS  Google Scholar 

  23. Oberley LW, Buettner GR (1979) Role of superoxide dismutase in cancer: a review. Cancer Res 39:1141–1149

    PubMed  CAS  Google Scholar 

  24. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  PubMed  CAS  Google Scholar 

  25. Flohé L (1985) The glutathione peroxidase reaction: molecular basis of the antioxidant function of selenium in mammals. Curr Top Cell Regul 27:473–478

    PubMed  Google Scholar 

  26. Kawakami T, Takahashi T, Shimizu H et al (2006) Highly liver-specific heme oxygenase-1 induction by interleukin-11 prevents carbon tetrachloride-induced hepatotoxicity. Int J Mol Med 18:537–546

    PubMed  CAS  Google Scholar 

  27. Takahashi T, Shimizu H, Morimatsu H et al (2007) Heme oxygenase-1: a fundamental guardian against oxidative tissue injuries in acute inflammation. Mini Rev Med Chem 7:745–753

    Article  PubMed  CAS  Google Scholar 

  28. Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel gene expression’s CT difference formula. J Mol Med 84:901–910

    Article  PubMed  CAS  Google Scholar 

  29. Podrez EA, Abu-Soud HM, Hazen SL (2000) Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28:1717–1725

    Article  PubMed  CAS  Google Scholar 

  30. Halliwell B, Aeschbach R, Loliger J, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol 33:601–617

    Article  PubMed  CAS  Google Scholar 

  31. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  32. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  PubMed  CAS  Google Scholar 

  33. Fishman K, Baure J, Zou Y et al (2009) Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic Biol Med 47:1459–1467

    Article  PubMed  CAS  Google Scholar 

  34. Kirkman HN, Gaetani GF (2007) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50

    Article  PubMed  CAS  Google Scholar 

  35. Kobayashi M, Sugiyama H, Wang DH et al (2005) Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68:1018–1031

    Article  PubMed  CAS  Google Scholar 

  36. Goth L, Eaton JW (2000) Hereditary catalase deficiencies and increased risk of diabetes. Lancet 356:1820–1821

    Article  PubMed  CAS  Google Scholar 

  37. Winterbourn CC (1995) Concerted antioxidant activity of glutathione and superoxide dismutase. In: Packer L, Fuchs J, (eds) Biothiols in health and disease. New York: Marcel Dekker Inc, pp 117–134

  38. Weiss N, Zhang YY, Heydrick S, Bierl C, Loscalzo J (2001) Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci USA 98:12503–12508

    Article  PubMed  CAS  Google Scholar 

  39. Wagener FA, Volk HD, Willis D et al (2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 55:551–571

    Article  PubMed  CAS  Google Scholar 

  40. Scharstuhl A, Mutsaers R, Pennings B et al (2009) Curcumin-induced apoptosis of human dermal fibroblasts is mediated by apoptosis inducing factor (Aif) and not by caspases. Wound Repair Regen 17:A18

    Google Scholar 

  41. Asija A, Peterson SJ, Stec DE, Abraham NG (2007) Forum origina research communication-targeting endothelial cells with heme oxygenase-1 gene using VE-cadherin promoter attenuate hyperglycemia-mediated cell injury and apoptosis. Antioxi Redox Signal 9:2065–2074

    Article  CAS  Google Scholar 

  42. Oster MM, Llobert JM, Domingo JL, German JB, Keen CL (1993) Vanadium treatment of diabetic Sprague-Dawley rats result in tissue vanadium accumulation and pro-oxidant effects. Toxicology 83:115–130

    Article  PubMed  CAS  Google Scholar 

  43. Preet A, Gupta BL, Yadava PK, Baquer NZ (2005) Efficacy of lower doses of vanadium in restoring altered glucose metabolism and antioxidant status in diabetic rat lenses. J Biosci 30:221–230

    Article  PubMed  CAS  Google Scholar 

  44. Yang XG, Yang XD, Yuan L, Wang K, Crans DC (2004) The permeability and cytotoxicity of insulin-mimetic vanadium compounds. Pharm Res 21:1026–1033

    Article  PubMed  CAS  Google Scholar 

  45. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB (2000) A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89–99

    Article  PubMed  CAS  Google Scholar 

  46. Shi X, Jiang H, Mao Y, Ye J, Saffiotti U (1996) Vanadium(IV)-mediated free radical generation and related 2′-deoxyguanosine hydroxylation and DNA damage. Toxicology 106:27–38

    Article  PubMed  CAS  Google Scholar 

  47. Samanta S, Swamy V, Suresh D et al (2008) Protective effects of vanadium against DMH-induced genotoxicity and carcinogenesis in rat colon: removal of O6-methylguanine DNA adducts, p53 expression, inducible nitric oxide synthase downregulation and apoptotic induction. Mutat Res 650:123–131

    PubMed  CAS  Google Scholar 

  48. Sekar N, Kanthasamy A, William S, Balasubramaniyan N, Govindasamy S (1990) Antioxidant effect of vanadate on experimental diabetic rats. Acta Diabetol Lat 27:285–293

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Knowledge Economy (MKE), Korea Institute for the Advancement of Technology (KIAT), and Jeju Leading Industry Office through the Leading Industry Development for Economic Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, A.D., Zhang, R., Kang, K.A. et al. Jeju Ground Water Containing Vanadium Enhances Antioxidant Systems in Human Liver Cells. Biol Trace Elem Res 147, 16–24 (2012). https://doi.org/10.1007/s12011-011-9277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9277-5

Keywords

Navigation