Skip to main content

Advertisement

Log in

The Effect of Age and Gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn Contents in Rib Bone of Healthy Humans

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of age and gender on major, minor, and trace element contents in the intact rib bone of 80 relatively healthy 15–55-year-old women and men was investigated. Contents or upper limit of contents of 16 chemical elements in the rib bone were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Mean values (M ± SΕΜ) for the mass fraction of Ba, Ca, Cu, Fe, K, Li, Mg, Na, P, S, Sr, and Zn (milligram per kilogram of dry bone) were as follows: 2.54 ± 0.16, 171,400 ± 4,050, 1.35 ± 0.22, 140 ± 11, 1,874 ± 71, 0.049 ± 0.011, 2,139 ± 38, 5,378 ± 88, 75,140 ± 1,660, 1,881 ± 51, 291 ± 20, and 92.8 ± 1.5, respectively. The upper limits of contents of Al, B, Mn, and V were <7.20, <0.65, <0.36, and <0.03, respectively. Statistically significant tendency for the Ca, Mg, and P content to decrease with age was found in the human rib bone, regardless of gender. The mass fraction of Fe in the male rib bone increases with age. It was shown that higher Ca, Mg, Na, P, and Sr mass fractions as well as lower Fe content were typical of female ribs as compared to those in male ribs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beattie JH, Avenell A (1992) Trace element nutrition and bone metabolism. Nutr Res Rev 5:167–188

    Article  PubMed  CAS  Google Scholar 

  2. Lewinnek GE, Kelsey J, White AA et al (1980) The significance and comparative analysis of the epidemiology of hip fractures. Clin Orthop 152:35–43

    PubMed  Google Scholar 

  3. Saltman P, Strause L (1993) The role of trace elements in osteoporosis. J Am Coll Nutr 12:384–389

    PubMed  CAS  Google Scholar 

  4. Bowen HJM, Gibbons D (1963) Radioactivation analysis. The Clarendon, Oxford

    Google Scholar 

  5. Bowen HJM (1979) Environmental chemistry of the elements. Academic, London

    Google Scholar 

  6. Zwanziger H (1989) The multielemental analysis of bone: a review. Biol Trace Elem Res 19:195–232

    Article  PubMed  CAS  Google Scholar 

  7. Iyengar GV, Kollmer WE, Bowen HGM (1978) The elemental composition of human tissues and body fluids. A compilation of values for adults. Verlag Chemie, Weinheim

    Google Scholar 

  8. Iyengar GV, Tandon L (1999) Minor and trace elements in human bones and teeth. IAEA (NAHRES-39), Vienna

  9. Grynpas MD, Pritzker KPH, Hancock RGV (1987) Neutron activation analysis of bulk and selected trace elements in bone using low flux SLOWPOKE reactor. Biol Trace Elem Res 13:333–344

    Article  CAS  Google Scholar 

  10. Zaichick V (1997) Sampling, sample storage and preparation of biomaterials for INAA in clinical medicine, occupational and environmental health, in Harmonization of Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques, IAEA, pp 123–133

  11. Zaichick V, Zaichick S (1998) INAA application for the assessment of chemical element losses under dry ashing of biological materials, in International Conference on Nuclear Analytical Methods in the Life Sciences pp 95–97

  12. Zaichick V (2004) Losses of chemical elements in biological samples under the dry aching process. Trace Elem Med 5(3):17–22

    Google Scholar 

  13. Kehoe RA, Cholak J, Story RV (1940) A spectrochemical study of the normal ranges of concentrations of certain trace metals in biological materials. J Nutr 19:579–588

    CAS  Google Scholar 

  14. Yoshinaga J, Suzuki T, Morita M (1989) Sex- and age-related variation in elemental concentrations of contemporary Japanese ribs. Sci Total Environ 79:209–221

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton EI (1979) The chemical elements and man. Charles C Thomas, Springfield

    Google Scholar 

  16. Schroeder HA, Tipton IH, Nason AP (1972) Trace metals in man: strontium and barium. J Chron Dis 25:491–517

    Article  PubMed  CAS  Google Scholar 

  17. Samudralwar DL, Robertson JD (1993) Determination of major and trace elements in bones by simultaneous PIXE/PIGE analysis. J Radioanal Nucl Chem 169:259–267

    Article  CAS  Google Scholar 

  18. Suzuki Y (1979) The normal levels of fluorine in the bone tissue of Japanese subjects. Tohoku J Exp Med 1291:327–336

    Article  Google Scholar 

  19. Yoshinaga J, Suzuki T, Morita M et al (1995) Trace elements in ribs of elderly people and elemental variation in the presence of chronic diseases. Sci Total Environ 162:239–252

    Article  PubMed  CAS  Google Scholar 

  20. Nusbaum RE, Butt EM, Gilmour TC et al (1965) Relation of air pollution to trace metals in bone. Arch Environ Health 10:227–232

    PubMed  CAS  Google Scholar 

  21. Takata MK, Saiki M, Sumita NM et al (2005) Trace element determinations in human cortical and trabecular bones. J Radioanal Nucl Chem 264:5–8

    Article  CAS  Google Scholar 

  22. Panday VK (1981) Certain trace elements in normal human bone. Bull Radiat Prot 4:11–15

    CAS  Google Scholar 

  23. Crawford MD, Crawford T (1969) Lead content of bones in a soft and hard water area. Lancet 1(No. 7597):699–701

    Article  PubMed  CAS  Google Scholar 

  24. Anke M, Schneider H-J, Grun M et al (1978) Die Diagnose des Mangan-, Zink- und Kupfermangels und der Kadmiumbelastung. Zbl Pharm 117:688–705

    CAS  Google Scholar 

  25. Woodard HG, White DR (1982) Bone models for use in radiotherapy dosimetry. Brit J Radiol 55:277–282

    Article  PubMed  CAS  Google Scholar 

  26. Schneider H-J, Anke M (1971) Die Abhangigkeiten des Kalzium-, Phosphor- und Mangangehaltes verschiedener Organe des Menschen. Arch Exper Vet Med 25:787–792

    CAS  Google Scholar 

  27. Hamilton EI, Minski MJ (1972/1973) Abundance of the chemical elements in man’s diet and possible relations with environmental factors. Sci Total Environ 1:375–394

    Article  Google Scholar 

  28. Brätter P, Gawlik D, Lausch J et al (1977) On the distribution of the trace elements in human skeletons. J Radioanal Chem 37:393–403

    Article  Google Scholar 

  29. Byrne AR, Kosta L (1978) Vanadium in foods and in human body fluids and tissues. Sci Total Environ 10:17–30

    Article  PubMed  CAS  Google Scholar 

  30. Sumino K, Hayakawa K, Shibata T et al (1975) Heavy metals in normal Japanese tissues. Arch Environ Health 30:487–494

    PubMed  CAS  Google Scholar 

  31. Koch HJ, Smith ER, McNeely J (1957) Analysis of trace elements in human tissue. II. The lymphomatous disease. Cancer 10:151–160

    Article  PubMed  CAS  Google Scholar 

  32. Zaichick V, Dyatlov A, Zaihick S (2000) INAA application in the age dynamics assessment of major, minor, and trace elements in the human rib. J Radioanal Nucl Chem 244:189–193

    Article  CAS  Google Scholar 

  33. Tzaphlidou M, Zaichick V (2003) Calcium, phosphorus, calcium–phosphorus ratio in rib bone of healthy humans. J Biol Trace Elem Res 93:63–74

    Article  CAS  Google Scholar 

  34. Zaichick V (2008) Neutron activation analysis of trace element contents in the rib bone of healthy men, in 9th International Conference on Nuclear Analytical Methods in the Life Sciences—NAMLS-9, Lisbon, Portugal, p A033

  35. Tipton IH, Johns JC, Boyd M (1968) The variation with age of elemental concentrations in human tissue, in Proceedings First International Congress of Radiation Protection, Pergamon, Elmsford, NY, p 759

  36. Anke M, Latunde-Dada O, Arnhold W et al (1999) The influence of age, sex and cadmium exposure on the ash, calcium, phosphorus, trace element and ultra trace element content in skeleton, kidneys and liver of humans, in Advances in the prevention of environmental cadmium pollution and countermeasures, Eiko Laboratory, Kanazawa Germany.

  37. Anke M, Glei M, Mulleret R et al (2001) Macro, trace and ultratrace element intake depending on the geological origin of the habitat, time, sex and form of diet, in Biochemistry and Geochemical Ecology, Moscow, pp. 235–263

  38. Patti F, Garcet M, Jeanmaire L (1984) Concentration of stable zinc in human bones. Determination by X-ray fluorescence spectrography. Sci Total Environ 39:71–79

    Article  PubMed  CAS  Google Scholar 

  39. Schuhmacher M, Domingo JL, Llobet JM et al (1992) Levels of same trace elements in autopsy tissues from subjects living in Tarragona province, Spain. In: Anastassopoulou J, et al (eds) John Libbey Eurotext, Paris, pp 430–431

  40. Sowden EM, Stitch SR (1957) Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone. Biochem J 67:104–109

    PubMed  CAS  Google Scholar 

  41. Tanaka G, Kawamura H, Nomura E (1981) Distribution of strontium in the skeleton and in the mass of mineralized bone. Health Phys 40:601–614

    Article  PubMed  CAS  Google Scholar 

  42. Vuorinen HS, Pihlman S, Mussalo-Rauhamaa H et al (1996) Trace and heavy metal analyses of a skeletal population representing the town people in Turku (ABO), Finland in the 16th–17th centuries: with special reference to gender, age and social background. Sci Total Environ 177:145–160

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Sergey Moiseev, Hospital Department of Forensic Medicine, Obninsk for supplying rib samples and Ms. Irina Moskvina, Institute of Microelectronics Technology and High Purity Materials, Chernogolovka for the assistance in the ICP-AES measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zaichick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichick, V., Zaichick, S., Karandashev, V. et al. The Effect of Age and Gender on Al, B, Ba, Ca, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Sr, V, and Zn Contents in Rib Bone of Healthy Humans. Biol Trace Elem Res 129, 107–115 (2009). https://doi.org/10.1007/s12011-008-8302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8302-9

Keywords

Navigation