Skip to main content
Log in

Bacterial Community Structure and Metabolic Function Succession During the Composting of Distilled Grain Waste

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Distilled grain waste (DGW) can be converted to organic fertilizer via aerobic composting process without inoculating exogenous microorganisms. To illustrate the material conversion mechanism, this study investigated the dynamic changes of bacterial community structure and metabolic function involved in DGW composting. Results showed that a significant increase in microbial community alpha diversity was observed during DGW composting. Moreover, unique community structures occurred at each composting stage. The dominant phyla were Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, Myxococcota, and Chloroflexi, whose abundance varied according to different composting stages. Keystone microbes can be selected as biomarkers for each stage, and Microbispora, Chryseolinea, Steroidobacter, Truepera, and Luteimonas indicating compost maturity. Co-occurrence network analysis revealed a significant relationship between keystone microbes and environmental factors. The carbohydrate and amino acid metabolism were confirmed as the primary metabolic pathways by metabolic function profiles. Furthermore, nitrogen metabolism pathway analysis indicated that denitrification and NH3 volatilization induced higher nitrogen loss during DGW composting. This study can provide new understanding of the microbiota for organic matter and nitrogen conversion in the composting process of DGW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

Code Availability

Not applicable.

References

  1. Zhou, X. B., & Zheng, P. (2013). Spirit-based distillers’ grain as a promising raw material for succinic acid production. Biotechnology Letters, 35(5), 679–684.

    Article  CAS  PubMed  Google Scholar 

  2. Tan, L., Sun, Z. Y., Zhang, W. X., Tang, Y. Q., Morimura, S., & Kida, K. (2014). Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process. Bioprocess and Biosystems Engineering, 37(10), 2031–2038.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J., Zhang, W. X., Wu, Z. Y., Yang, J., Liu, Y. H., Zhong, X., & Deng, Y. (2013). A comparison of different dilute solution explosions pretreatment for conversion of distillers’ grains into ethanol. Preparative Biochemistry & Biotechnology, 43(1), 1–21.

    Article  Google Scholar 

  4. Yang, L., Zhang, S. H., Chen, Z. Q., Wen, Q. X., & Wang, Y. (2016). Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. Bioresource Technology, 204(3), 185–191.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, S. P., Wang, L., Sun, Z. Y., Wang, S. T., Shen, C. H., Tang, Y. Q., & Kida, K. (2021). Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresource Technology, 337, 125492.

    Article  CAS  PubMed  Google Scholar 

  6. Meng, Q. X., Yang, W., Men, M. Q., Bello, A., Xu, X. H., Xu, B. S., Deng, L. T., Jiang, X., Sheng, S. Y., Wu, X. T., Han, Y., & Zhu, H. F. (2019). Microbial community succession and response to environmental variables during cow manure and corn straw composting. Frontiers in Microbiology, 10, 529.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Song, X. C., Liu, M. Q., Wu, D., Qi, L., Ye, C. L., Jiao, J. G., & Hu, F. (2014). Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Management, 34(11), 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, Y. L., Sun, Z. Y., Zhong, X. Z., Wang, T. T., Tan, L., Tang, Y. Q., & Kida, K. (2017). Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process. Waste Management, 61, 206–212.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. P., Zhong, X. Z., Wang, T. T., Sun, Z. Y., Tang, Y. Q., & Kida, K. (2017). Aerobic composting of distilled grain waste eluted from a Chinese spirit-making process: The effects of initial pH adjustment. Bioresource Technology, 245(Pt A), 778–785.

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Z. Y., Zhang, J., Zhong, X. Z., Tan, L., Tang, Y. Q., & Kida, K. (2016). Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system. Waste Management, 51, 55–64.

    Article  PubMed  Google Scholar 

  11. Wang, X., Selvam, A., Chan, M., & Wong, J. W. C. (2013). Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresource Technology, 147, 17–22.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong, X. Z., Li, X. X., Zeng, Y., Wang, S. P., Sun, Z. Y., & Tang, Y. Q. (2020). Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresource Technology, 306, 123091.

    Article  CAS  PubMed  Google Scholar 

  13. Bello, A., Han, Y., Zhu, H., Deng, L., Yang, W., Meng, Q., Sun, Y., Egbeagu, U. U., Sheng, S., Wu, X., Jiang, X., & Xu, X. (2020). Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Science of the Total Environment, 721, 137759.

    Article  CAS  Google Scholar 

  14. Qiu, X. W., Zhou, G. X., Zhang, J. B., & Wang, W. (2019). Microbial community responses to biochar addition when a green waste and manure mix are composted: A molecular ecological network analysis. Bioresource Technology, 273, 666–671.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, L., Zhao, Y., Zhang, W., Zhou, H., Chen, X., Li, Y., Wei, D., & Wei, Z. (2019). Roles of bacterial community in the transformation of organic nitrogen toward enhanced bioavailability during composting with different wastes. Bioresource Technology, 285, 121326.

    Article  CAS  PubMed  Google Scholar 

  16. Wei, H., Wang, L., Hassan, M., & Xie, B. (2018). Succession of the functional microbial communities and the metabolic functions in maize straw composting process. Bioresource Technology, 256, 333–341.

    Article  CAS  PubMed  Google Scholar 

  17. Cai, L., Chen, T. B., Gao, D., & Yu, J. (2016). Bacterial communities and their association with the bio-drying of sewage sludge. Water Research, 90, 44–51.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y., Men, M., Xu, B., Meng, Q., Bello, A., Xu, X., & Huang, X. (2019). Assessing key microbial communities determining nitrogen transformation in composting of cow manure using illumina high-throughput sequencing. Waste Management, 92, 59–67.

    Article  CAS  PubMed  Google Scholar 

  19. Meng, X. Y., Liu, B., Zhang, H., Wu, J. W., Yuan, X. F., & Cui, Z. J. (2019). Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment. Bioresource Technology, 276, 281–287.

    Article  CAS  PubMed  Google Scholar 

  20. Thelusmond, J. R., Strathmarin, T. J., & Cupples, A. M. (2016). The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Science of the Total Environment, 571, 1241–1252.

    Article  CAS  Google Scholar 

  21. Zhang, X., Li, S., Cheng, W., Zhao, Y., Cui, H., Xie, X., Wu, J., Wei, Z., & Liu, Y. (2021). Oxytetracycline stress reconstruct the core microbial community related to nitrogen transformation during composting. Bioresource Technology, 319, 124142.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, P., Li, Y., Gao, Y., Yin, M., Wu, Y., Liu, L., Du, N., Liu, J., Yu, X., Wang, L., & Guo, W. (2021). Insight into the effect of nitrogen-rich substrates on the community structure and the co-occurrence network of thermophiles during lignocellulose-based composting. Bioresource Technology, 319, 124111.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, C., Gao, Z., Shi, W., Li, L., Tian, R., Huang, J., Lin, R., Wang, B., & Zhou, B. (2020). Material conversion, microbial community composition and metabolic functional succession during green soybean hull composting. Bioresource Technology, 316, 123823.

    Article  CAS  PubMed  Google Scholar 

  24. Jiao, S., Zhang, Z. Q., Yang, F., Lin, Y. B., Chen, W. M., & Wei, G. H. (2017). Temporal dynamics of microbial communities in microcosms in response to pollutants. Molecular Ecology, 26(3), 923–936.

    Article  CAS  PubMed  Google Scholar 

  25. Langille, M. G. I., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Thurber, R. L. V., Knight, R., Beiko, R. G., & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 31(9), 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., & Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Research, 47(D1), D590–D595.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, G., Xu, X., Qiu, X., & Zhang, J. (2019). Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresource Technology, 272, 10–18.

    Article  CAS  PubMed  Google Scholar 

  28. Liang, C., Das, K. C., & McClendon, R. W. (2003). The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology, 86(2), 131–137.

    Article  CAS  PubMed  Google Scholar 

  29. Lu, Y. J., Wu, X. W., & Guo, J. F. (2009). Characteristics of municipal solid waste and sewage sludge co-composting. Waste Management, 29(3), 1152–1157.

    Article  CAS  PubMed  Google Scholar 

  30. Zeng, G. M., Zhang, L. H., Dong, H. R., Chen, Y. N., Zhang, J. C., Zhu, Y., Yuan, Y. J., Xie, Y. K., & Fang, W. (2018). Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. Bioresource Technology, 253, 112–120.

    Article  CAS  PubMed  Google Scholar 

  31. Zeng, Y., De Guardia, A., Ziebal, C., De Macedo, F. J., & Dabert, P. (2012). Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresource Technology, 110, 144–152.

    Article  CAS  PubMed  Google Scholar 

  32. Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119–137.

    Article  PubMed  Google Scholar 

  33. Tiquia, S. M., & Tam, N. F. Y. (1998). Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology, 65(1–2), 43–49.

    Article  CAS  Google Scholar 

  34. Awasthi, M. K., Duan, Y. M., Liu, T., Awasthi, S. K., & Zhang, Z. Q. (2020). Relevance of biochar to influence the bacterial succession during pig manure composting. Bioresource Technology, 304, 122962.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong, X. Z., Ma, S. C., Wang, S. P., Wang, T. T., Sun, Z. Y., Tang, Y. Q., Deng, Y., & Kida, K. J. (2018). A comparative study of composting the solid fraction of dairy manure with or without bulking material: Performance and microbial community dynamics. Bioresource Technology, 247, 443–452.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Y., Awasthia, Mukesh Kumar, Bao, H., Bie, J., Lei, S., & Lv, J. (2020). Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresource Technology, 313, 123647.

    Article  CAS  PubMed  Google Scholar 

  37. Zou, W., Zhao, C. Q., & Luo, H. B. (2018). Diversity and function of microbial community in Chinese Strong-Flavor Baijiu ecosystem: A review. Frontiers in Microbiology, 9, 671.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang, L. L., Zhang, H. Q., Wang, Z. H., Chen, G. J., & Wang, L. S. (2016). Dynamic changes of the dominant functioning microbial community in the compost of a 90–m3 aerobic solid state fermentor revealed by integrated meta-omics. Bioresource Technology, 203, 1–10.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, W. M., Yu, C. X., Wang, X. J., & Hai, L. (2020). Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technology, 297, 122410.

    Article  CAS  PubMed  Google Scholar 

  40. Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, K., Wu, Y., Li, W., Wu, C., & Chen, Z. (2018). Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting. Bioresource Technology, 251, 320–326.

    Article  CAS  PubMed  Google Scholar 

  42. Said-Pullicino, D., & Gigliotti, G. (2007). Oxidative biodegradation of dissolved organic matter during composting. Chemosphere, 68(6), 1030–1040.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry (2021JJ002), the Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province (2018GTY005), and the Graduate Student’s Research and Innovation Fund of Sichuan University (2012017yjsy165).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.P. Wang, Z.Y. Sun; methodology and investigation: S.P. Wang; data curation: S.P. Wang, Z.Y. Sun, S.T. Wang; visualization: S.P. Wang, S.T. Wang, H.W. Yuan; writing—original draft: S.P. Wang; formal analysis: S.T. Wang, H.W. Yuan, M.Z. An; validation: S.T. Wang, Z.Y. Xia; funding acquisition: Z.Y. Sun, H.W. Yuan, M.Z. An; writing—review and editing: Z.Y. Sun, Z.Y. Xia, Y.Q. Tang, C.H. Shen, K. Kida; project administration: Y.Q. Tang, C.H. Shen, K. Kida.

Corresponding author

Correspondence to Zhao-Yong Sun.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

I confirm that the final manuscript has been seen and approved by all the authors.

Consent to Publish

All the authors mutually agreed that the work should be published in Applied Biochemistry and Biotechnology.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Bacterial community dynamics is involved in distilled grain waste composting.

2. Unique community structures and keystone microbes are present at different stages.

3. Keystone microbes and environmental factors exhibited significant relationship.

4. Carbohydrate and amino acid metabolism were the primary metabolic pathways.

5. Denitrification and NH3 volatilization caused higher nitrogen loss.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SP., Sun, ZY., Wang, ST. et al. Bacterial Community Structure and Metabolic Function Succession During the Composting of Distilled Grain Waste. Appl Biochem Biotechnol 194, 1479–1495 (2022). https://doi.org/10.1007/s12010-021-03731-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03731-5

Keywords

Navigation