Skip to main content

Advertisement

Log in

Enhanced Enzymatic Hydrolysis of Sorghum Stalk by Supercritical Carbon Dioxide and Ultrasonic Pretreatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sorghum was pretreated by sole ultrasound or supercritical carbon dioxide (scCO2), as well as the method combining both to intensify enzymatic hydrolysis. The effect of the time (1–5 h) and temperature (30–70 °C) on ultrasonic pretreatment was investigated, and the best condition was determined as 5 h and 50 °C with the EH sugar yield of 33.69%. The influence of the time (6–48 h), temperature (40–80 °C), and pressure (15–25 MPa) on scCO2 pretreatment were also discussed in this study. The optimum condition of scCO2 pretreatment was identified as 60 °C, 20 MPa, and 36 h with the EH sugar yield of 43.57%. Compared with the sole ultrasonic or scCO2 pretreatment, scCO2 associated with the subsequent ultrasonic pretreatment did not show significant improvement in sugar yield. However, 30 MPa was an extremely effective pressure, which led to 45.50% EH sugar yield with 60 °C, 6-h pretreatment. Finally, the change of the microscopic structures of the sorghum stalk after the pretreatment was investigated using scanning electron microscope (SEM) and X-ray diffraction (XRD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee, J. S., & Saka, S. (2010). Supplement issue: selected peer-reviewed papers of the conference on “Renewable Energy 2008-Recent Developments of Biomass Conversion Technologies” BEXCO, Busan, Republic of Korea, 13-17th October 2008. Bioresource Technology, 101, S1–S1.

    Article  CAS  Google Scholar 

  2. Xiang, Q., Lee, Y. Y., Pettersson, P. O., et al. (2003). Heterogeneous aspects of acid hydrolysis of α-cellulose. Applied Biochemistry & Biotechnology, 107(1–3), 505–514.

    Article  Google Scholar 

  3. Bjerre, A. B., Olesen, A. B., Fernqvist, T., et al. (1996). Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology & Bioengineering, 49(5), 568–577.

    Article  CAS  Google Scholar 

  4. Mandels, M., Hontz, L., & Nystrom, J. (2010). Enzymatic hydrolysis of waste cellulose. Biotechnology & Bioengineering, 105(1), 1–25.

    Article  CAS  Google Scholar 

  5. Hendriks, A. T., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 99(1), 10–18.

    Article  Google Scholar 

  6. Mouthier, T., Appeldoorn, M. M., Pel, H., Schols, H. A., Gruppen, H., & Kabel, M. A. (2018). Corn stover lignin is modified differently by acetic acid compared to sulfuric acid. Industrial Crops and Products, 121, 160–168.

    Article  CAS  Google Scholar 

  7. Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9(9), 1621–1651.

    Article  CAS  Google Scholar 

  8. Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology & Biotechnology, 82(5), 815–827.

    Article  CAS  Google Scholar 

  9. Alizadeh, H., Teymouri, F., Gilbert, T. I., et al. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 121-124(1–3), 1133.

    Article  CAS  Google Scholar 

  10. Pielhop, T., Amgarten, J., Rohr, P. R. V., et al. (2016). Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnology for Biofuels, 9(1), 152.

    Article  Google Scholar 

  11. Zheng, Y., Lin, H. M., Wen, J., Cao, N., Yu, X., & Tsao, G. T. (1995). Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnology Letters, 17(8), 845–850.

    Article  CAS  Google Scholar 

  12. Zheng, Y., Lin, H. M., & Tsao, G. T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology Progress, 14(6), 890–896.

    Article  CAS  Google Scholar 

  13. Kim, K. H., & Hong, J. (2001). Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresource Technology, 77(2), 139–144.

    Article  CAS  Google Scholar 

  14. Narayanaswamy, N., Faik, A., Goetz, D. J., & Gu, T. (2011). Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresource Technology, 102(13), 6995–7000.

    Article  CAS  Google Scholar 

  15. Srinivasan, N., & Ju, L. K. (2010). Pretreatment of guayule biomass using supercritical carbon dioxide-based method. Bioresource Technology, 101(24), 9785–9791.

    Article  CAS  Google Scholar 

  16. Zhao, W., Zong, Z.-M., Lin, J., Song, Y. M., Guo, X. F., Yao, Z. S., Zhang, L. N., He, R. L., Cao, J. P., & Wei, X. Y. (2007). Dewaxing from stalks with petroleum ether by different methods. Energy & Fuels, 21(2), 1165–1168.

    Article  CAS  Google Scholar 

  17. Sul’man, E. M., Sul’man, M. G., & Prutenskaya, E. A. (2011). Effect of ultrasonic pretreatment on the composition of lignocellulosic material in biotechnological processes. Catalysis in Industry, 3(1), 28–33.

    Article  Google Scholar 

  18. Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 100(2), 903–908.

    Article  CAS  Google Scholar 

  19. Yin, J., Hao, L., Yu, W., Wang, E., Zhao, M., Xu, Q., & Liu, Y. (2014). Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chinese Journal of Catalysis, 35(5), 763–769.

    Article  CAS  Google Scholar 

  20. Moharreri, E., Jafari, T., Suib, S. L., et al. (2017). Improved understanding of CO2–water pretreatment of guayule biomass by high solids ratio experiments, rapid physical expansion, and examination of textural properties. Industrial & Engineering Chemistry Research, 56(3) 645–652.

  21. Adney, B., & Baker, J. (1996). Measurement of cellulase activities. LAP-006 NREL analytical procedure, 6(645).

  22. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Biochemistry, 31(3), 426–428.

    CAS  Google Scholar 

  23. Tang A. (2000). The structure and properties of cellulose fibers treated with ultrasonic wave. South China University of Technology.

  24. Bussemaker, M. J., & Zhang, D. (2013). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial & Engineering Chemistry Research, 52(10), 3563–3580.

    Article  CAS  Google Scholar 

  25. Miao, G., Feng, X., Li, S. R., et al. (2010). Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 106(4), 470–475.

    Article  Google Scholar 

  26. Liu, G., Ma, L., & Xiang, S. (2013). Chemical properties data manual, inorganic volume. Chemical Industry Press.

  27. Zhao, M. J., Xu, Q. Q., Li, G. M., et al. (2018). Pretreatment of agricultural residues by supercritical CO 2 at 50–80 °C to enhance enzymatic hydrolysis. Journal of Energy Chemistry. https://doi.org/10.1016/j.jechem.2018.05.003

  28. Ninomiya, K., Takamatsu, H., Onishi, A., Takahashi, K., & Shimizu, N. (2013). Sonocatalytic–Fenton reaction for enhanced OH radical generation and its application to lignin degradation. Ultrasonics Sonochemistry, 20(4), 1092–1097.

    Article  CAS  Google Scholar 

  29. Segal, L. C., Creely, J., Martin, A. E. J., et al. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786–794.

    Article  CAS  Google Scholar 

  30. Mat Zain, N. F. (2014). Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of Nutrition & Food Sciences, 05(01), 334.

  31. Wang, S., Li, F., Zhang, P., Jin, S., Tao, X., Tang, X., Ye, J., Nabi, M., & Wang, H. (2017). Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energy Conversion and Management, 149, 409–415.

    Article  CAS  Google Scholar 

  32. Daza Serna, L. V., Orrego Alzate, C. E., & Cardona Alzate, C. A. (2016). Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresource Technology, 199, 113–120.

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Petrochemicals Joint Fund between National Natural Science Foundation of China and China National Petroleum Corporation (U1662130), National Natural Science Foundation of China (21506027), and the Fundamental Research Funds for the Central Universities (DUT17JC34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Yin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhao, M., Xu, Q. et al. Enhanced Enzymatic Hydrolysis of Sorghum Stalk by Supercritical Carbon Dioxide and Ultrasonic Pretreatment. Appl Biochem Biotechnol 188, 101–111 (2019). https://doi.org/10.1007/s12010-018-2909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2909-x

Keywords

Navigation