Skip to main content
Log in

Improvement of the Production Efficiency of l-(+)-Tartaric Acid by Heterogeneous Whole-Cell Bioconversion

Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

An Escherichia coli-engineered bacterium with cis-epoxysuccinate hydrolase (ESH) activity was used to catalyze the stereospecific hydrolysis of cis-epoxysuccinic acid to l-(+)-tartaric acid. The effect of the substrate composition on the production efficiency of l-(+)-tartaric acid was investigated. Based on the sodium-type homogeneous substrate system, a heterogeneous substrate system, composed of 1.2 M sodium-type substrate and 1.8 M calcium-type substrate, was designed to improve ESH catalytic efficiency. After process optimization, a catalytic efficiency of 9.37 × 10−3 g U−1 h−1 was obtained with fed-batch mode in the heterogeneous substrate system, about a twofold increase compared to the traditional bioconversion process with Nocardia tartaricans cells. The scale-up tests were carried out in a 15-m3 stirred tank reactor, which indicated that the heterogeneous substrate system had great application prospect for the l-(+)-tartaric acid industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Faber, K., Mischitz, M., & Kroutil, W. (1996). Microbial epoxide hydrolases. Acta Chemica Scandinavica, 50, 249–258.

    Article  CAS  Google Scholar 

  2. Bosch, R. J., & Ramsey, S. H. (1992). Process for the production of high purity tartaric acid. United States Patent, 5, 087,746.

    Google Scholar 

  3. Bhat, H. K., Qazi, G. N., Chaturvedi, S. K., & Chopra, C. L. (1986). Production of tartaric acid by improved resistant strain of Gluconobacter subozydans. Research India, 31, 148–152.

    CAS  Google Scholar 

  4. Kotera, U., Kodama, T., Minoda, Y., & Yamada, K. (1972). Isolation and chemical structure of new oxidation product of 5-ketogluconic acid and a hypothetical pathway from glucose to tartaric acid through this new compound. Agricultural and Biological Chemistry, 36, 1315–1325.

    Article  CAS  Google Scholar 

  5. Miura, Y., Yutani, K., Takesue, H., & Fujii, K. (1977). Microbiological process for preparing L-tartaric acid in presence of surfactants. United States Patent, 4, 017,362.

    Google Scholar 

  6. Archelas, A., & Furstoss, R. (1997). Synthesis of enantiopure epoxides through biocatalytic approaches. Annual Review of Microbiology, 51, 491–525.

    Article  CAS  Google Scholar 

  7. Tsurumi, Y., & Fujioka, T. (1978). Process for the manufacture of L(+)-tartaric acid or salts thereof. United States Patent, 4, 092,220.

    Google Scholar 

  8. Kamatani, Y., Okazaki, H., Imai, K., Fujita, N., Yamazaki, Y., & Ogino, K. (1977). Method for producing L (+)-tartaric acid. United States Patent, 4, 028,185.

    Google Scholar 

  9. Willaert, R., & De Vuyst, L. (2006). Continuous production of L (+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor. Applied Microbiology and Biotechnology, 71, 155–163.

    Article  CAS  Google Scholar 

  10. Kroutil, W., Genzel, Y., Pietzsch, M., Syldatk, C., & Faber, K. (1998). Purification and characterization of a highly selective epoxide hydrolase from Nocardia sp. EH1. Journal of Biotechnology, 61, 143–150.

    Article  CAS  Google Scholar 

  11. Wang, Z. Q., Wang, Y. S., & Su, Z. G. (2013). Purification and characterization of a cis-epoxysuccinic acid hydrolase from Nocardia tartaricans CAS-52, and expression in Escherichia coli. Applied Microbiology and Biotechnology, 97, 2433–2441.

    Google Scholar 

  12. Liu, Z. Q., Li, Y., Xu, Y. Y., Ping, L. F., & Zheng, Y. G. (2007). Cloning, sequencing, expression of a novel epoxide hydrolase gene from Rhodococcus opacus in Escherichia coli and characterization of enzyme. Applied Microbiology and Biotechnology, 74, 99–106.

    Article  CAS  Google Scholar 

  13. Vasu, V., Kumaresan, J., Babu, M. G., & Meenakshisundaram, S. (2012). Active site analysis of cis-epoxysuccinate hydrolase from Nocardia tartaricans using homology modeling and site-directed mutagenesis. Applied Microbiology and Biotechnology, 93, 2377–2386.

    Article  CAS  Google Scholar 

  14. van Loo, B., Spelberg, J. H. L., Kingma, J., Sonke, T., Wubbolts, M. G., & Janssen, D. B. (2004). Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chemistry and Biology, 11, 981–990.

    Article  Google Scholar 

  15. Pan, H. F., Xie, Z. P., Bao, W. N., Cheng, Y. Q., Zhang, J. G., & Li, Y. Q. (2011). Site-directed mutagenesis of epoxide hydrolase to probe catalytic amino acid residues and reaction mechanism. FEBS Letters, 585, 2545–2550.

    Article  CAS  Google Scholar 

  16. Archelas, A., & Furstoss, R. (1998). Epoxide hydrolases: new tools for the synthesis of fine organic chemicals. Trends in Biotechnology, 16, 108–116.

    Article  CAS  Google Scholar 

  17. Li, X., Xu, T. C., Ma, X. H., Guo, K. P., Kai, L., Zhao, Y. H., Jia, X. M., & Ma, Y. (2008). Optimization of culture conditions for production of cis-epoxysuccinic acid hydrolase using response surface methodology. Bioresource Technology, 99, 5391–5396.

    Article  CAS  Google Scholar 

  18. Long, Q. Y., Huang, L., Li, Z. M., & Ye, Q. (2008). Fed-batch culture of Nocardia sp. for epoxysuccinate hydrolase production. Process Biochemistry, 43, 438–444.

    Article  CAS  Google Scholar 

  19. Kurillová, L., Gemeiner, P., Vikartovská, A., Miková, H., Rosenberg, M., & Ilavský, M. (2000). Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Journal of Microencapsulation, 17, 279–296.

    Article  Google Scholar 

  20. Miková, H., Rosenberg, M., Kristofikova, L., & Liptaj, T. (1998). Influence of molybdate and tungstate ions on activity of cis-epoxysuccinate hydrolase in Nocardia tartaricans. Biotechnological Letters, 20, 833–835.

    Article  Google Scholar 

  21. Bučko, M., Vikartovska, A., Lacik, I., Kollarikova, G., Gemeiner, P., Patoprsty, V., & Brygin, M. (2005). Immobilization of a whole-cell epoxide-hydrolyzing biocatalyst in sodium alginate-cellulose sulfate-poly (methylene-co-guanidine) capsules using a controlled encapsulation process. Enzyme and Microbial Technology, 36, 118–126.

    Article  Google Scholar 

  22. Rosenberg, M., Miková, H., & Krištofíkova, L. (1999). Production of L tartaric acid by immobilized bacterial cells Nocardia tartaricans. Biotechnological Letters, 21, 491–495.

    Article  CAS  Google Scholar 

  23. Wang, Z. Q., Wang, Y. S., Shi, H., & Su, Z. G. (2012). Expression and production of recombinant cis-epoxysuccinate hydrolase in Escherichia coli under the control of temperature-dependent promoter. Journal of Biotechnology, 162, 232–236.

    Article  CAS  Google Scholar 

  24. Pan, H. F., Bao, W. N., Xie, Z. P., Zhang, J. G., & Li, Y. Q. (2010). Molecular cloning and characterization of a cis-epoxysuccinate hydrolase from Bordetella sp. BK-52. Journal of Microbiology and Biotechnology, 20, 659–665.

    Article  CAS  Google Scholar 

  25. Kurillová, L., Gemeiner, P., Ilavský, M., Štefuca, V., Polakovic, M., Welwardová, A., & Tóth, D. (1992). Calcium pectate beads for cell entrapment. 4. Properties of stabilized and hardened calcium pectate gel beads with and without cells. Biotechnology and Applied Biochemistry, 16, 236–251.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (No. 2013CB733604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunshan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wang, Y., Shi, H. et al. Improvement of the Production Efficiency of l-(+)-Tartaric Acid by Heterogeneous Whole-Cell Bioconversion. Appl Biochem Biotechnol 172, 3989–4001 (2014). https://doi.org/10.1007/s12010-014-0830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0830-5

Keywords

Navigation