Skip to main content
Log in

Protein Thermostabilizing Factors: High Relative Occurrence of Amino Acids, Residual Properties, and Secondary Structure Type in Different Residual State

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The relative occurrences of amino acids, residual properties, and secondary structure type found in the residual structure states were compared between thermophilic and mesophilic proteins to find out the protein-thermostabilizing factors. The thermostabilizing patterns in each residual structure state are as follows: (1) in fully exposed state, higher relative occurrences of GLN, ILE, and PHE; (2) in exposed state, higher relative occurrences of ARG, GLU, salt bridges, the residue with low solvation energy, and the residues in 3/10 helix, and lower relative occurrences of ALA, SER, and VAL; (3) in partially exposed state, higher relative occurrence of flexible residue and lower relative occurrence of SER; (4) in buried state, higher relative occurrences of ARG and GLU, and lower relative occurrence of MET; and (5) in well-buried state, higher relative occurrences of ALA, cation–pi interaction, the residues in 3/10 helix, and lower relative occurrences of ASP, GLY, and the residues in the extended beta strand. These findings could be useful for developing protein thermostabilization strategies according to each residual structure state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. van den Burg, B., & Eijsink, V. G. (2002). Selection of mutations for increased protein stability. Current Opinion in Biotechnology, 13, 333–337.

    Article  Google Scholar 

  2. Fagain, C. O. (1995). Understanding and increasing protein stability. Biochimica et Biophysica Acta, 1252, 1–14.

    Article  Google Scholar 

  3. Gromiha, M. M., Oobatake, M., Kono, H., Uedaira, H., & Sarai, A. (1999). Relationship between amino acid properties and protein stability: buried mutations. Journal of Protein Chemistry, 18, 565–578.

    Article  CAS  Google Scholar 

  4. Dahiyat, B. I. (1999). In silico design for protein stabilization. Current Opinion in Biotechnology, 10, 387–390.

    Article  CAS  Google Scholar 

  5. Jaenicke, R. (1996). Stability and folding of ultrastable proteins: eye lens crystallins and enzymes from thermophiles. The FASEB Journal, 10, 84–92.

    CAS  Google Scholar 

  6. Scandurra, R., Consalvi, V., Chiaraluce, R., Politi, L., & Engel, P. C. (1998). Protein thermostability in extremophiles. Biochimie, 80, 933–941.

    Article  CAS  Google Scholar 

  7. Hecht, K., Wrba, A., & Jaenicke, R. (1989). Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity. European Journal of Biochemistry, 183, 69–74.

    Article  CAS  Google Scholar 

  8. Russell, R. J., Hough, D. W., Danson, M. J., & Taylor, G. L. (1994). The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure, 2, 1157–1167.

    Article  CAS  Google Scholar 

  9. Yip, K. S., Stillman, T. J., Britton, K. L., Artymiuk, P. J., Baker, P. J., Sedelnikova, S. E., et al. (1995). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure, 3, 1147–1158.

    Article  CAS  Google Scholar 

  10. Tanner, J. J., Hecht, R. M., & Krause, K. L. (1996). Determinants of enzyme thermostability observed in the molecular structure of Thermus aquaticus d-glyceraldehyde-3-phosphate dehydrogenase at 25 Angstroms resolution. Biochemistry, 35, 2597–2609.

    Article  CAS  Google Scholar 

  11. Shiraki, K., Nishikori, S., Fujiwara, S., Hashimoto, H., Kai, Y., Takagi, M., et al. (2001). Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. European Journal of Biochemistry, 268, 4144–4150.

    Article  CAS  Google Scholar 

  12. Spassov, V. Z., Karshikoff, A. D., & Ladenstein, R. (1995). The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Science, 4, 1516–1527.

    Article  CAS  Google Scholar 

  13. Vogt, G., & Argos, P. (1997). Protein thermal stability: hydrogen bonds or internal packing? Folding and Design, 2, S40–S46.

    Article  CAS  Google Scholar 

  14. Vogt, G., Woell, S., & Argos, P. (1997). Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 269, 631–643.

    Article  CAS  Google Scholar 

  15. Karshikoff, A., & Ladenstein, R. (1998). Proteins from thermophilic and mesophilic organisms essentially do not differ in packing. Protein Engineering, 11, 867–872.

    Article  CAS  Google Scholar 

  16. Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470, 65–69.

    Article  CAS  Google Scholar 

  17. Szilagyi, A., & Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8, 493–504.

    Article  CAS  Google Scholar 

  18. Pack, S. P., & Yoo, Y. J. (2003). Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. Journal of Molecular Catalysis B: Enzymatic, 26, 257–264.

    Article  CAS  Google Scholar 

  19. Pack, S. P., & Yoo, Y. J. (2004). Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology, 111, 269–277.

    Article  CAS  Google Scholar 

  20. Pack, S. P., & Yoo, Y. J. (2005). Packing-based difference of structural features between thermophilic and mesophilic proteins. International Journal of Biological Macromolecules, 35, 169–174.

    Article  CAS  Google Scholar 

  21. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). The Protein Data Bank. Nucleic Acids Research, 28, 235–242.

    Article  CAS  Google Scholar 

  22. Pattabiraman, N., Ward, K. B., & Fleming, P. J. (1995). Occluded molecular surface: analysis of protein packing. Journal of Molecular Recognition, 8, 334–344.

    Article  CAS  Google Scholar 

  23. Fleming, P. J., & Richards, F. M. (2000). Protein packing: dependence on protein size, secondary structure and amino acid composition. Journal of Molecular Biology, 299, 487–498.

    Article  CAS  Google Scholar 

  24. Parthasarathy, S., & Murthy, M. R. N. (1997). Analysis of temperature factor distribution in high-resolution protein structures. Protein Science, 6, 2561–2567.

    Article  CAS  Google Scholar 

  25. Eisenberg, D., & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature, 319, 199–203.

    Article  CAS  Google Scholar 

  26. McDonald, I. K., & Thornton, J. M. (1994). Satisfying hydrogen-bonding potential in proteins. Journal of Molecular Biology, 238, 777–793.

    Article  CAS  Google Scholar 

  27. Dill, K. A. (1990). Dominant forces in protein folding. Biochemistry, 29, 7133–7155.

    Article  CAS  Google Scholar 

  28. Gallivan, J. P., & Dougherty, D. A. (1999). Cation-pi interactions in structural biology. Proceedings of the National Academy of Sciences of the United States of America, 96, 9459–9464.

    Article  CAS  Google Scholar 

  29. Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.

    Article  CAS  Google Scholar 

  30. Mendenhall, W., & Beaver, R. J. (1991). Introduction to probability and statistics. Boston: PWS-Kent.

    Google Scholar 

  31. Korndorfer, I., Steipe, B., Huber, R., Tomschy, A., & Jaenicke, R. (1995). The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 A resolution. Journal of Molecular Biology, 246, 511–521.

    Article  CAS  Google Scholar 

  32. Kelly, C. A., Nishiyama, M., Ohnishi, Y., Beppu, T., & Birktoft, J. J. (1993). Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry, 32, 3913–3922.

    Article  CAS  Google Scholar 

  33. Denisov, V. P., Venu, K., Peters, J., Horlein, H. D., & Halle, B. (1997). Orientational disorder and entropy of water in protein cavities. The Journal of Physical Chemistry. B, 101, 9380–9389.

    Article  CAS  Google Scholar 

  34. Nagendra, H. G., Sukumar, N., & Vijayan, M. (1998). Role of water in plasticity, stability, and action of proteins: the crystal structures of lysozyme at very low levels of hydration. Proteins, 32, 229–240.

    Article  CAS  Google Scholar 

  35. Creighton, T. E. (1997). Proteins: structures and molecular properties (2nd ed.). New York: Freeman & Company.

    Google Scholar 

  36. Fields, P. A. (2001). Review: protein function at thermal extremes: balancing stability and flexibility. Comparative Biochemistry and Physiology. Part A, 129, 417–431.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) grant by the Korean Government (MEST; NRF-2011-C1AAA001-2011-0030345) and also supported by the Mid-career Researcher Program through NRF grant funded by the MEST (NRF-2010-0026498).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung Pil Pack or Young Je Yoo.

Additional information

Seung Pil Pack and Taek Jin Kang equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pack, S.P., Kang, T.J. & Yoo, Y.J. Protein Thermostabilizing Factors: High Relative Occurrence of Amino Acids, Residual Properties, and Secondary Structure Type in Different Residual State. Appl Biochem Biotechnol 171, 1212–1226 (2013). https://doi.org/10.1007/s12010-013-0195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0195-1

Keywords

Navigation