Skip to main content
Log in

Effect of Microaerobic Fermentation in Preprocessing Fibrous Lignocellulosic Materials

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Amending soil with organic matter is common in agricultural and logging practices. Such amendments have benefits to soil fertility and crop yields. These benefits may be increased if material is preprocessed before introduction into soil. We analyzed the efficiency of microaerobic fermentation (MF), also referred to as Bokashi, in preprocessing fibrous lignocellulosic (FLC) organic materials using varying produce amendments and leachate treatments. Adding produce amendments increased leachate production and fermentation rates and decreased the biological oxygen demand of the leachate. Continuously draining leachate without returning it to the fermentors led to acidification and decreased concentrations of polysaccharides (PS) in leachates. PS fragmentation and the production of soluble metabolites and gases stabilized in fermentors in about 2–4 weeks. About 2 % of the carbon content was lost as CO2. PS degradation rates, upon introduction of processed materials into soil, were similar to unfermented FLC. Our results indicate that MF is insufficient for adequate preprocessing of FLC material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Butterly, C. R., Kaudal, B. B., Baldock, J. A., & Tang, C. (2011). European Journal of Soil Science, 62, 718–727.

    Article  CAS  Google Scholar 

  2. Campiglia, E., Mancinelli, R., & Radicetti, E. (2011). Scientia Horticulturae, 130, 588–598.

    Article  CAS  Google Scholar 

  3. Hoyle, F. C., & Murphy, D. V. (2011). Plant and Soil, 347, 53–64.

    Article  CAS  Google Scholar 

  4. Kumar, V., Brainard, D. C., Bellinder, R. R., & Hahn, R. R. (2011). Weed Science, 59, 567–573.

    Article  CAS  Google Scholar 

  5. Albers, D., Schaefer, M., & Scheu, S. (2006). Ecology, 87, 235–245.

    Article  Google Scholar 

  6. Hubbe, M. A., Nazhad, M., & Sanchez, C. (2010). Bioresources, 5, 2808–2854.

    Google Scholar 

  7. Zanon, M. J., Font, M. I., & Jorda, C. (2011). Crop Protection, 30, 1138–1143.

    Article  Google Scholar 

  8. Tyree, M. C., Seiler, J. R., & Maier, C. A. (2011). Forest Ecology and Management, 262, 1473–1482.

    Article  Google Scholar 

  9. Lee, C., Erickson, P., Lazarus, M. & Smith, G. (2010) Greenhouse gas and air pollutant emissions of alternatives for woody biomass residues. Seattle: Stockholm Environment Institute.

  10. Blanco-Canqui, H., & Lal, R. (2004). Critical Reviews in Plant Sciences, 23, 481–504.

    Article  CAS  Google Scholar 

  11. USDA. (2011). USDA-NRCS Energy consumption awareness tool: Tillage.

    Google Scholar 

  12. Nishio, M. (1996). Microbial fertilizers in Japan, FFTC-Extension Bulletins 1–12. Ibaraki: National Institute of Agro-Environmental Sciences.

    Google Scholar 

  13. Perez, A., Cespedes, C., & Nunez, P. (2008). Revista de la Ciencia del Suelo y Nutricion Vegetal, 8, 10–29.

    Google Scholar 

  14. Rezende, A. M. F. A., Tomita, C. K., & Uesugi, C. H. (2008). Tropical Plant Pathology, 33, 288–294.

    Article  Google Scholar 

  15. Green, T., & Popa, R. (2011). Applied Biochemistry and Biotechnology, 163, 519–527.

    Article  CAS  Google Scholar 

  16. Yan, P. S., & Xu, H. L. (2002). Journal of Sustainable Agriculture, 19, 105–112.

    Article  Google Scholar 

  17. Hussain, T., Jilani, T. & Tahir, S.H. (1995) In Fourth International Conference on Kyusei Nature Farming: Nature farming with EM technology for sustainable crops production in Pakistan (pp. 71–78), France.

  18. Mayer, J., Scheid, S., Widmer, F., Fliessbach, A., & Oberholzer, H. R. (2010). Applied Soil Ecology, 46, 230–239.

    Article  Google Scholar 

  19. Maso, M. A., & Blasi, A. B. (2008). Bioresource Technology, 99, 5120–5124.

    Article  Google Scholar 

  20. Bhattarai, S., Bhudhathoki, K. & Sherchan, D.P. (2006) In National Workshop on Organic Farming: Organic farming, its role in soil fertility, effect on crop production, constraints and future strategy (pp. 131–137), Kirtipur, Kathmandu, Nepal.

  21. Safarik, I., & Santruckova, H. (1992). Plant and Soil, 143, 109–114.

    Article  CAS  Google Scholar 

  22. DuBois, M., Giles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  23. Green, T., & Popa, R. (2010). Journal of Polymers and the Environment, 18, 634–637.

    Article  CAS  Google Scholar 

  24. Green, G. (1982). Soil survey of Washington County, Oregon. Washington: US Departmentt of Agriculture Soil Conservation Service.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a sustainability initiative grant from the Miller Foundation at PSU, by a grant from the Graduate School at PSU and by Bokashicycle LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Popa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alattar, M.A., Green, T.R., Henry, J. et al. Effect of Microaerobic Fermentation in Preprocessing Fibrous Lignocellulosic Materials. Appl Biochem Biotechnol 167, 909–917 (2012). https://doi.org/10.1007/s12010-012-9717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9717-5

Keywords

Navigation