Skip to main content

Advertisement

Log in

A review of recent applications of atmospheric pressure plasma jets for materials processing

  • Review Paper
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Atmospheric pressure plasma jets (APPJs) have received significant attention due to their combination of simplicity, low cost, and wide possibilities for surface treatment and modification. In this article, the latest developments in the design and applications of APPJs are reviewed. It is shown that APPJs could be successfully used in materials science and manufacturing for the deposition of coatings, surface modifications, and treatments. In addition, APPJs have found wide application in the biomedical sciences as an effective medical tool. A comprehensive review of research papers published during the past several years is provided to assess the recent application of APPJs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schutze, A, Jeong, JY, Babayan, SE, Park, J, Selwyn, GS, Hicks, RF, “The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources.” IEEE T. Plasma Sci., 26 (6) 1685–1694 (1998)

    Article  Google Scholar 

  2. Kolb, JF, Mohamed, AA, Price, RO, Swanson, RJ, Bowman, A, Chiavarini, RL, Stacey, M, Schoenbach, KH, “Cold Atmospheric Pressure Air Plasma Jet for Medical Applications.” Appl. Phys. Lett., 92 (24) 241501–241503 (2008)

    Article  Google Scholar 

  3. Laroussi, M, Akan, T, “Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review.” Plasma Process. Polym., 4 (9) 777–788 (2007)

    Article  Google Scholar 

  4. Tendero, C, Tixier, C, Tristant, P, Desmaison, J, Leprince, P, “Atmospheric Pressure Plasmas: A Review.” Spectrochim. Acta B, 61 (1) 2–30 (2006)

    Article  Google Scholar 

  5. Zhanguo, L, Ying, L, Peng, C, Hongjie, Z, “Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet.” Plasma Sci. Technol., 15 (7) 696–701 (2013)

    Article  Google Scholar 

  6. Penkov, OV, Lee, HJ, Plaksin, VY, Mansur, R, Kim, JH, “Deposition of the ZnO Transparent Electrodes at Atmospheric Pressure Using a DC Arc Plasmatron.” Thin Solid Films, 518 (22) 6160–6162 (2010)

    Article  Google Scholar 

  7. Chang, KM, Huang, SH, Wu, CJ, Lin, WL, Chen, WC, Chi, CW, Lin, JW, Chang, CC, “Transparent Conductive Indium-Doped Zinc Oxide Films Prepared by Atmospheric Pressure Plasma Jet.” Thin Solid Films, 519 (15) 5114–5117 (2011)

    Article  Google Scholar 

  8. Lien, ST, Li, HC, Yang, YJ, Hsu, CC, Cheng, IC, Chen, JZ, “Atmospheric Pressure Plasma Jet Annealed ZnO Films for MgZnO/ZnO Heterojunctions.” J. Phys. D, 46 (7) 075202–075208 (2013)

    Article  Google Scholar 

  9. Chang, SM, Rodriguez Tolava, EF, Yang, YJ, Li, HC, Lee, RC, Wu, NL, Hsu, CC, “One-Step Fast Synthesis of Li4Ti5O12 Particles Using an Atmospheric Pressure Plasma Jet.” J. Am. Ceram. Soc., 97 (3) 708–712 (2014)

  10. Hsu, CM, Lien, ST, Yang, YJ, Chen, JZ, Cheng, IC, Hsu, CC, “Deposition of Transparent and Conductive ZnO Films by an Atmospheric Pressure Plasma-Jet-Assisted Process.” Thin Solid Films, (2014). doi:10.1016/j.tsf.2014.02.102

    Google Scholar 

  11. Penkov, OV, Lee, HJ, Plaksin, VY, Ko, MG, Joa, SB, Yim, CJ, “Effect of Ion Beam Irradiation on the Structure of ZnO Films Deposited by a DC Arc Plasmatron.” Rev. Sci. Instrum., 79 (2) 3–02C504 (2008)

    Article  Google Scholar 

  12. Lien, ST, Chen, JZ, Yang, YJ, Hsu, CC, Cheng, IC, “Sol–Gel Derived Amorphous/Nanocrystalline MgZnO Thin Films Annealed by Atmospheric Pressure Plasma Jets.” Ceram. Int., 40 (2) 2707–2715 (2014)

    Article  Google Scholar 

  13. Liao, WY, Chang, H, Yang, YJ, Hsu, CC, Cheng, IC, Chen, JZ, “Oxygen-Deficient Indium Tin Oxide Thin Films Annealed by Atmospheric Pressure Plasma Jets With/Without Air-Quenching.” Appl. Surf. Sci., 292 213–218 (2014)

    Article  Google Scholar 

  14. Penkov, OV, Lee, DH, Kim, H, Kim, DE, “Frictional Behavior of Atmospheric Plasma Jet Deposited Carbon–ZnO Composite Coatings.” Compos. Sci. Technol., 77 60–66 (2013)

    Article  Google Scholar 

  15. Deng, XL, Nikiforov, AY, Vanraes, P, Leys, C, “Direct Current Plasma Jet at Atmospheric Pressure Operating in Nitrogen and Air.” J. Appl. Phys., 113 (2) 023305–023309 (2013)

    Article  Google Scholar 

  16. Hnilica, J, Schafer, J, Foest, R, Zajickova, L, Kudrle, V, “PECVD of Nanostructured SiO2 in a Modulated Microwave Plasma Jet at Atmospheric Pressure.” J. Phys. D, 46 (33) 335202–335208 (2013)

    Article  Google Scholar 

  17. Ito, Y, Sakai, O, Tachibana, K, “Study of Plasma Enhanced Chemical Vapor Deposition of ZnO Films by Non-Thermal Plasma Jet at Atmospheric Pressure.” Thin Solid Films, 518 (13) 3513–3516 (2010)

    Article  Google Scholar 

  18. Bornholdt, S, Wolter, M, Kersten, H, “Characterization of an Atmospheric Pressure Plasma Jet for Surface Modification and Thin Film Deposition.” Eur. Phys. J. D, 60 (3) 653–660 (2010)

    Article  Google Scholar 

  19. Huang, C, Hsu, WT, Liu, CH, Wu, SY, Yang, SH, Chen, TH, Wei, TC, “Low-Temperature Atmospheric-Pressure-Plasma Jet for Thin-Film Deposition.” IEEE T. Plasma Sci., 37 (7) 1127–1128 (2009)

    Article  Google Scholar 

  20. Lin, YS, Tsai, TH, Hung, SC, Tien, SW, “Enhanced Lithium Electrochromism of Atmospheric Pressure Plasma Jet-Synthesized Tungsten/Molybdenum Oxide Films for Flexible Electrochromic Devices.” J. Solid State Electrochem., 17 (4) 1077–1088 (2013)

    Article  Google Scholar 

  21. Furusho, H, Kitano, K, Hamaguchi, S, Nagasaki, Y, “Preparation of Stable Water-Dispersible PEGylated Gold Nanoparticles Assisted by Nonequilibrium Atmospheric-Pressure Plasma Jets.” Chem. Mater., 21 (15) 3526–3535 (2009)

    Article  Google Scholar 

  22. Zhao, P, Zheng, W, Meng, YD, Nagatsu, M, “Characteristics of High-Purity Cu Thin Films Deposited on Polyimide by Radio-Frequency Ar/H2 Atmospheric-Pressure Plasma Jet.” J. Appl. Phys., 113 (12) 123301–123305 (2013)

    Article  Google Scholar 

  23. Liu, WJ, Guo, XJ, Chang, CL, Lu, JH, “Diamond-Like Carbon Thin Films Synthesis by Low Temperature Atmospheric Pressure Plasma Method.” Thin Solid Films, 517 (14) 4229–4232 (2009)

    Article  Google Scholar 

  24. Hong, Y, Kang, J, Lee, H, Uhm, H, Moon, E, Park, Y, “Sterilization Effect of Atmospheric Plasma on Escherichia coli and Bacillus subtilis Endospores.” Lett. Appl. Microbiol, 48 (1) 33–37 (2009)

    Article  Google Scholar 

  25. Ikawa, S, Kitano, K, Hamaguchi, S, “Effects of pH on Bacterial Inactivation in Aqueous Solutions Due to Low-Temperature Atmospheric Pressure Plasma Application.” Plasma Process. Polym., 7 (1) 33–42 (2010)

    Article  Google Scholar 

  26. Liu, L, Zhang, Y, Tian, W, Meng, Y, Ouyang, J, “Electrical Characteristics and Formation Mechanism of Atmospheric Pressure Plasma Jet.” Appl. Phys. Lett., 104 (24) 4–244108 (2014)

    Google Scholar 

  27. Hsu, Y, Li, HC, Yang, YJ, HSu, CC, “Deposition of Zinc Oxide Thin Films by an Atmospheric Pressure Plasma Jet.” Thin Solid Films, 519 (10) 3095–3099 (2011)

    Article  Google Scholar 

  28. Koban, I, Matthes, R, Hubner, NO, Welk, A, Meisel, P, Holtfreter, B, Sietmann, R, Kindel, E, Weltmann, KD, Kramer, A, “Treatment of Candida albicans Biofilms with Low-Temperature Plasma Induced by Dielectric Barrier Discharge and Atmospheric Pressure Plasma Jet.” New J. Phys., 12 (7) 15–073039 (2010)

    Article  Google Scholar 

  29. Nie, QY, Cao, Z, Ren, CS, Wang, DZ, Kong, MG, “A Two-Dimensional Cold Atmospheric Plasma Jet Array for Uniform Treatment of Large-Area Surfaces for Plasma Medicine.” New J. Phys., 11 (11) 14–115015 (2009)

    Article  Google Scholar 

  30. Qian, C, Fang, Z, Yang, J, Kang, M, “Investigation on Atmospheric Pressure Plasma Jet Array in Ar.” IEEE T. Plasma Sci., 42 1700–1702 (2014)

    Google Scholar 

  31. Liu, J, Hei, LF, Song, JH, Li, CM, Tang, WZ, Chen, GC, Lu, FX, “High-Rate Homoepitaxial Growth of CVD Single Crystal Diamond by DC Arc Plasma Jet At Blow-Down (Open Cycle) Mode.” Diam. Relat. Mater., 46 42–51 (2014)

    Article  Google Scholar 

  32. Hei, LF, Liu, J, Li, CM, Song, JH, Tang, WZ, Lu, FX, “Fabrication and Characterizations of Large Homoepitaxial Single Crystal Diamond Grown by DC Arc Plasma Jet CVD.” Diam. Relat. Mater., 30 77–84 (2012)

    Article  Google Scholar 

  33. Dowling, DP, O’Neill, FT, Langlais, SJ, Law, VJ, “Influence of DC Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation.” Plasma Process. Polym., 8 (8) 718–727 (2011)

    Article  Google Scholar 

  34. Ionita, E, Ionita, M, Stancu, E, Teodorescu, M, Dinescu, G, “Small Size Plasma Tools for Material Processing at Atmospheric Pressure.” Appl. Surf. Sci., 255 (10) 5448–5452 (2009)

    Article  Google Scholar 

  35. Geyter, N, Sarani, A, Jacobs, T, Nikiforov, AY, Desmet, T, Dubruel, P, “Surface Modification of Poly-ε-Caprolactone with an Atmospheric Pressure Plasma Jet.” Plasma Chem. Plasma Process, 33 (1) 165–175 (2013)

    Article  Google Scholar 

  36. Bai, S, Ho, KK, Knox, G, Bismarck, A, “Improving the Adhesion Between Carbon Fibres and an Elastomer Matrix Using an Acrylonitrile Containing Atmospheric Plasma Treatment.” Compos. Interfaces, 20 (9) 761–782 (2013)

    Article  Google Scholar 

  37. Donegan, M, Milosavljevic, V, Dowling, DP, “Activation of PET Using an RF Atmospheric Plasma System.” Plasma Chem. Plasma Process, 33 (5) 941–957 (2013)

    Article  Google Scholar 

  38. Moritzer, E, Budde, C, Leister, C, “Effect of Atmospheric Pressure Plasma Pre-treatment and Aging Conditions on the Surface of Thermoplastics.” Weld World, 1–10 (2014)

  39. Ying, J, Chunsheng, R, Liang, Y, Jialiang, Z, Dezhen, W, “Atmospheric Pressure Plasma Jet in Ar and O2/Ar Mixtures: Properties and High Performance for Surface Cleaning.” Plasma Sci. Technol., 15 (12) 1203–1208 (2013)

    Article  Google Scholar 

  40. Fricke, K, Steffen, H, von Woedtke, T, Schroder, K, Weltmann, KD, “High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet.” Plasma Process. Polym., 8 (1) 51–58 (2011)

    Article  Google Scholar 

  41. Gao, Z, Sun, J, Peng, S, Yao, L, Qiu, Y, “Surface Modification of a Polyamide 6 Film by He/CF4 Plasma Using Atmospheric Pressure Plasma Jet.” Appl. Surf. Sci., 256 (5) 1496–1501 (2009)

    Article  Google Scholar 

  42. Peng, S, Liu, X, Sun, J, Gao, Z, Yao, L, Qiu, Y, “Influence of Absorbed Moisture on Desizing of Poly (vinyl alcohol) on Cotton Fabrics During Atmospheric Pressure Plasma Jet Treatment.” Appl. Surf. Sci., 256 (13) 4103–4108 (2010)

    Article  Google Scholar 

  43. Kan, CW, Lam, CF, Chan, CK, Ng, SP, “Using Atmospheric Pressure Plasma Treatment for Treating Grey Cotton Fabric.” Carbohydr. Polym., 102 167–173 (2014)

    Article  Google Scholar 

  44. Kawase, T, Tanaka, T, Minbu, H, Kamiya, M, Oda, M, Hara, T, “An Atmospheric-Pressure Plasma-Treated Titanium Surface Potentially Supports Initial Cell Adhesion, Growth, and Differentiation of Cultured Human Prenatal-Derived Osteoblastic Cells.” J. Biomed. Mater. Res., 12 (6) 1289–1296 (2014)

    Article  Google Scholar 

  45. Ando, A, Uno, H, Urisu, T, Hamaguchi, S, “Grid-Pattern Formation of Extracellular Matrix on Silicon by Low-Temperature Atmospheric-Pressure Plasma Jets for Neural Network Biochip Fabrication.” Appl. Surf. Sci., 276 1–6 (2013)

    Article  Google Scholar 

  46. Jin, H, Xin, Q, Li, N, Jin, J, Wang, B, Yao, Y, “The Morphology and Chemistry Evolution of Fused Silica Surface After Ar/CF4 Atmospheric Pressure Plasma Processing.” Appl. Surf. Sci., 286 405–411 (2013)

    Article  Google Scholar 

  47. Wang, I, Ning, E, Fu, I, Wu, H, Jia, H, “An Experimental Study of Photoresist Material Etching by an Atmospheric-Pressure Plasma Jet with Ar/Air Mixed Gas.” J. Plasma Phys., 79 (05) 683–689 (2013)

    Article  Google Scholar 

  48. Soysal, D, Ansar, A, “A New Approach to Understand Liquid Injection into Atmospheric Plasma Jets.” Surf. Coat. Technol., 220 187–190 (2013)

    Article  Google Scholar 

  49. Ting, K, Kao, JY, Hsieh, YS, Chen, CC, Chang, CC, Wu, CJ, “The Dry Process of ZnO Film Deposition by Atmospheric Pressure Plasma.” J. Phys., 418 (1) 5–012145 (2013)

    Google Scholar 

  50. Lommatzsch, U, Ihde, J, “Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low Adhesion Surfaces.” Plasma Process. Polym., 6 (10) 642–648 (2009)

    Article  Google Scholar 

  51. Zeng, Jl, Lin, J, Zhang, X, “Deposition of Silicon Oxide Films by Non-equilibrium, Atmospheric-Pressure Plasma Jet.” Surf. Coat. Technol., 228 S416–S418 (2013)

    Article  Google Scholar 

  52. Zhang, X, Ptasinska, S, “Growth of Silicon Oxynitride Films by Atmospheric Pressure Plasma Jet.” J. Phys. D, 47 (14) 145202–145209 (2014)

    Article  Google Scholar 

  53. Lin, YS, Tsai, TH, Tien, SW, “Atmospheric Pressure Plasma Jet-Synthesized Electrochromic Organomolybdenum Oxide Thin Films for Flexible Electrochromic Devices.” Thin Solid Films, 529 248–252 (2013)

    Article  Google Scholar 

  54. Lin, YS, Chuang, PY, Shie, PS, “Electrochromic Ni–Fe Oxide Thin Films Synthesized by an Atmospheric Pressure Plasma Jet for Flexible Electrochromic Application.” Thin Solid Films, (2014). doi:10.1016/j.tsf.2014.05.064

    Google Scholar 

  55. Hendrik, P, Thomas, A, Georg, B, Fred, P, Axel, S, “Surface Patterning by Local Plasma Jet Sacrificial Oxidation of Silicon.” Plasma Process. Polym., 10 (5) 416–421 (2013)

    Article  Google Scholar 

  56. Deng, X, Leys, C, Vujosevic, D, Vuksanovic, V, Cvelbar, U, De Geyter, N, Morent, R, Nikiforov, A, “Engineering of Composite Organosilicon Thin Films with Embedded Silver Nanoparticles Via Atmospheric Pressure Plasma Process for Antibacterial Activity.” Plasma Process. Polym., (2014). doi:10.1002/ppap.201400042

    Google Scholar 

  57. Singh, VP, Sil, A, Jayaganthan, R, “A Study on Sliding and Erosive Wear Behaviour of Atmospheric Plasma Sprayed Conventional and Nanostructured Alumina Coatings.” Mater. Des., 32 (2) 584–591 (2011)

    Article  Google Scholar 

  58. Bai, Y, Han, Z, Li, H, Xu, C, Xu, Y, Ding, C, Yang, J, “Structure–Property Differences Between Supersonic and Conventional Atmospheric Plasma Sprayed Zirconia Thermal Barrier Coatings.” Surf. Coat. Technol., 205 (13) 3833–3839 (2011)

    Article  Google Scholar 

  59. Bai, Y, Ding, C, Li, H, Han, Z, Ding, B, Wang, T, Yu, L, “Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System.” J. Therm. Spray Technol., 22 (7) 1201–1209 (2013)

    Article  Google Scholar 

  60. Fakhouri, H, Salem, DB, Carton, O, Pulpytel, J, ArefiKhonsari, F, “Highly Efficient Photocatalytic TiO2 Coatings Deposited by Open Air Atmospheric Pressure Plasma Jet with Aerosolized TTIP Precursor.” J. Phys. D, 47 (26) 265301–265311 (2014)

    Article  Google Scholar 

  61. Li, L, Zhang, X, Zhang, M, Li, P, Chu, PK, “Microporous N-Doped Carbon Film Produced by Cold Atmospheric Plasma Jet and Its Cell Compatibility.” Vacuum, 108 27–34 (2014)

    Article  Google Scholar 

  62. Lee, HW, Nam, SH, Mohamed, AH, Kim, GC, Lee, JK, “Atmospheric Pressure Plasma Jet Composed of Three Electrodes: Application to Tooth Bleaching.” Plasma Process. Polym., 7 274–280 (2010)

    Article  Google Scholar 

  63. Daeschlein, G, von Woedtke, T, Kindel, E, Brandenburg, R, Weltmann, KD, Junger, M, “Antibacterial Activity of an Atmospheric Pressure Plasma Jet Against Relevant Wound Pathogens in vitro on a Simulated Wound Environment.” Plasma Process. Polym., 7 (3–4) 224–230 (2010)

    Article  Google Scholar 

  64. Isbary, G, Morfill, G, Schmidt, H, Georgi, M, Ramrath, K, Heinlin, J, Karrer, S, Landthaler, M, Shimizu, T, Steffes, B, “A First Prospective Randomized Controlled Trial to Decrease Bacterial Load Using Cold Atmospheric Argon Plasma on Chronic Wounds in Patients.” Br. J. Dermatol., 163 (1) 78–82 (2010)

    Google Scholar 

  65. Guimin, X, Guanjun, Z, Xingmin, S, Yue, M, Ning, W, Yuan, L, “Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon.” Plasma Sci. Technol., 11 (1) 83–88 (2009)

    Article  Google Scholar 

  66. Kim, SJ, Chung, T, Bae, S, Leem, S, “Bacterial Inactivation Using Atmospheric Pressure Single Pin Electrode Microplasma Jet with a Ground Ring.” Appl. Phys. Lett., 94 (14) 141502–141503 (2009)

    Article  Google Scholar 

  67. Kang, SK, Choi, MY, Koo, IG, Kim, PY, Kim, Y, Kim, GJ, Mohamed, AA, Collins, GJ, Lee, JK, “Reactive Hydroxyl Radical-Driven Oral Bacterial Inactivation by Radio Frequency Atmospheric Plasma.” Appl. Phys. Lett., 98 (14) 143702–143703 (2011)

    Article  Google Scholar 

  68. Shen, J, Cheng, C, Fang, S, Xie, H, Lan, Y, Ni, G, Meng, Y, Luo, J, Xiangke, “Sterilization of Bacillus subtilis Spores Using an Atmospheric Plasma Jet with Argon and Oxygen Mixture Gas.” Appl. Phys. Express, 5 (3) 036201–036203 (2012)

    Article  Google Scholar 

  69. Homma, T, Furuta, M, Takemura, Y, “Inactivation of Escherichia coli Using the Atmospheric Pressure Plasma Jet of Ar Gas.” Jpn. J. Appl. Phys., 52 (3R) 036201–036204 (2013)

    Article  Google Scholar 

  70. Hosseinzadeh Colagar, A, Memariani, H, Sohbatzadeh, F, Valinataj Omran, A, “Nonthermal Atmospheric Argon Plasma Jet Effects on Escherichia coli Biomacromolecules.” Appl. Biochem. Biotechnol., 171 (7) 1617–1629 (2013)

    Article  Google Scholar 

  71. Xiaohu, L, Feng, H, Ying, G, Jing, Z, Jianjun, S, “Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet.” Plasma Sci. Technol., 15 (5) 439–442 (2013)

    Article  Google Scholar 

  72. Lu, X, Xiong, Z, Zhao, F, Xian, Y, Xiong, Q, Gong, W, Zou, C, Jiang, Z, Pan, Y, “A Simple Atmospheric Pressure Room-Temperature Air Plasma Needle Device for Biomedical Applications.” Appl. Phys. Lett., 95 (18) 181501–181503 (2009)

    Article  Google Scholar 

  73. Lu, X, Cao, Y, Yang, P, Xiong, Q, Xiong, Z, Xian, Y, Pan, Y, “A Plasma Device for Sterilization of Root Canal of Teeth.” IEEE T. Plasma Sci., 37 (5) 668–673 (2009)

    Article  Google Scholar 

  74. Lehmann, A, Rueppell, A, Schindler, A, Zylla, IM, Seifert Hans, J, Nothdurft, F, Hannig, M, Rupf, S, “Modification of Enamel and Dentin Surfaces by Non-Thermal Atmospheric Plasma.” Plasma Process. Polym., 10 (3) 262–270 (2013)

    Article  Google Scholar 

  75. Lee, HW, Kim, GJ, Kim, JM, Park, JK, Lee, JK, Kim, GC, “Tooth Bleaching with Nonthermal Atmospheric Pressure Plasma.” J. Endod., 35 (4) 587–591 (2009)

    Article  Google Scholar 

  76. Lademann, J, Kramer, A, Weltmann, KD, Hartmann, B, Fluhr, JW, Hinz, P, Hubner, G, Lademann, O, Ottomann, C, Richter, H, “Risk Assessment of the Application of a Plasma Jet in Dermatology.” J. Biomed. Opt., 14 (5) 054025–054026 (2009)

    Article  Google Scholar 

  77. Georgescu, N, Lupu, AR, “Tumoral and Normal Cells Treatment with High-Voltage Pulsed Cold Atmospheric Plasma Jets.” IEEE T. Plasma Sci., 38 (8) 1949–1955 (2010)

    Article  Google Scholar 

  78. Kim, CH, Kwon, S, Bahn, JH, Lee, K, Jun, SI, Rack, PD, Baek, SJ, “Effects of Atmospheric Nonthermal Plasma on Invasion of Colorectal Cancer Cells.” Appl. Phys. Lett., 96 (24) 243701–243703 (2010)

    Article  Google Scholar 

  79. Kim, SJ, Chung, T, Bae, S, Leem, S, “Induction of Apoptosis in Human Breast Cancer Cells by a Pulsed Atmospheric Pressure Plasma Jet.” Appl. Phys. Lett., 97 (2) 023702–023703 (2010)

    Article  Google Scholar 

  80. Keidar, M, Walk, R, Shashurin, A, Srinivasan, P, Sandler, A, Dasgupta, S, Ravi, R, GuerreroPreston, R, Trink, B, “Cold Plasma Selectivity and the Possibility of a Paradigm Shift in Cancer Therapy.” Br. J. Cancer, 105 (9) 1295–1301 (2011)

    Article  Google Scholar 

  81. Joh, HM, Kim, SJ, Chung, TH, Leem, SH, “Comparison of the Characteristics of Atmospheric Pressure Plasma Jets Using Different Working Gases and Applications to Plasma-Cancer Cell Interactions.” AIP Adv., 3 (9) 12–092128 (2013)

    Article  Google Scholar 

  82. Kaushik, NK, Kim, YH, Han, YG, Choi, EH, “Effect of Jet Plasma on T98G Human Brain Cancer Cells.” Curr. Appl. Phys., 13 (1) 176–180 (2013)

    Article  Google Scholar 

  83. Keidar, M, Shashurin, A, Volotskova, O, Ann Stepp, M, Srinivasan, P, Sandler, A, Trink, B, “Cold Atmospheric Plasma in Cancer Therapy.” Phys. Plasma, 20 (5) 8–057101 (2013)

    Article  Google Scholar 

  84. Ptasinska, S, Bahnev, B, Stypczynska, A, Bowden, M, Mason, NJ, Braithwaite, NS, “DNA Strand Scission Induced by a Non-thermal Atmospheric Pressure Plasma Jet.” Phys. Chem. Chem. Phys., 12 (28) 7779–7781 (2010)

    Article  Google Scholar 

  85. Kim, K, Choi, JD, Hong, YC, Kim, G, Noh, EJ, Lee, JS, Yang, SS, “Atmospheric-Pressure Plasma-Jet From Micronozzle Array and its Biological Effects on Living Cells for Cancer Therapy.” Appl. Phys. Lett., 98 (7) 073701–073703 (2011)

    Article  Google Scholar 

  86. O’Connell, D, Cox, LJ, Hyland, WB, McMahon, SJ, Reuter, S, Graham, WG, Gans, T, Currell, FJ, “Cold Atmospheric Pressure Plasma Jet Interactions with Plasmid DNA.” Appl. Phys. Lett., 98 (4) 043701–043703 (2011)

    Article  Google Scholar 

  87. Lademann, O, Richter, H, Patzelt, A, Alborova, A, Humme, D, Weltmann, K, Hartmann, B, Hinz, P, Kramer, A, Koch, S, “Application of a Plasma Jet for Skin Antisepsis: Analysis of the Thermal Action of the Plasma by Laser Scanning Microscopy.” Laser Phys. Lett., 7 (6) 458–462 (2010)

    Article  Google Scholar 

  88. Leduc, M, Coulombe, S, Leask, RL, “Atmospheric Pressure Plasma Jet Deposition of Patterned Polymer Films for Cell Culture Applications.” IEEE T. Plasma Sci., 37 (6) 927–933 (2009)

    Article  Google Scholar 

  89. Walk, RM, Snyder, JA, Srinivasan, P, Kirsch, J, Diaz, SO, Blanco, FC, Shashurin, A, Keidar, M, Sandler, AD, “Cold Atmospheric Plasma for the Ablative Treatment of Neuroblastoma.” J. Pediatr. Surg., 48 (1) 67–73 (2013)

    Article  Google Scholar 

  90. Guerrero-Preston, R, Ogawa, T, Uemura, M, Shumulinsky, G, Valle, BL, Pirini, F, Ravi, R, Sidransky, D, Keidar, M, Trink, B, “Cold Atmospheric Plasma Treatment Selectively Targets Head and Neck Squamous Cell Carcinoma Cells.” Int. J. Mol. Med., 34 (4) 941–947 (2014)

    Google Scholar 

  91. van Gessel, AFH, Alards, KMJ, Bruggeman, PJ, “NO Production in an RF Plasma Jet at Atmospheric Pressure.” J. Phys. D, 46 (26) 265202–265210 (2013)

    Article  Google Scholar 

  92. Gaens, WV, Bruggeman, PJ, Bogaerts, A, “Numerical Analysis of the NO and O Generation Mechanism in a Needle-Type Plasma Jet.” New J. Phys., 16 (6) 25–063054 (2014)

    Article  Google Scholar 

  93. Shimizu, K, Kaneta, S, Blajan, M, Ogi, K, Konno, A, “Surface Modification of Dye-Sensitized Solid-State Solar Cells by Plasma Jet.” J. Phys., 518 (1) 012024–012026 (2014)

    Google Scholar 

  94. Ni, G, Zhao, G, Jiang, Y, Li, J, Meng, Y, Wang, X, “Steam Plasma Jet Treatment of Phenol in Aqueous Solution at Atmospheric Pressure.” Plasma Process. Polym., 10 (4) 353–363 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2010-0018289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penkov, O.V., Khadem, M., Lim, WS. et al. A review of recent applications of atmospheric pressure plasma jets for materials processing. J Coat Technol Res 12, 225–235 (2015). https://doi.org/10.1007/s11998-014-9638-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-014-9638-z

Keywords

Navigation