Skip to main content
Log in

Effect of a Modified Atmosphere on Drying and Quality Characteristics of Carrots

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Many quality degradation problems are related to the high O2 content of normal air atmosphere during drying. To reduce O2 content in drying atmosphere and obtain food products with high quality, modified atmosphere drying was conducted. In this study, carrots were used as experimental materials to investigate the effects of drying parameters on the drying characteristics and product quality. Results showed that the increase in drying temperature and the decrease in O2 content positively influenced drying rate and effective moisture diffusivity. High carotenoid content, ascorbic acid retention ratio, and rehydration ratio were produced with low drying temperature and O2 content. The color parameters of products were highly correlated with carotenoid content, and low color difference could be achieved as drying temperature and O2 content decreased. Drying temperature and O2 significantly influenced carotenoid content, ascorbic acid content, rehydration, and color difference of dried products. Good quality parameters were obtained only at low drying temperature under the drying condition of normal atmosphere and could be achieved at drying temperatures of 40 to 70 °C when O2 content is 5 %. Therefore, the modified atmosphere drying is a promising method to protect the quality of dried products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a* :

Redness

b* :

Yellowness

C d,C 0 :

Ascorbic acid contents of dried carrots and fresh carrots

D eff :

Effective moisture diffusivity (m2/s)

L :

Half thickness of carrot slice (m)

L* :

Lightness

M :

Moisture content (g/g dry base)

M 0 :

Initial moisture content (g/g dry base)

M e :

Equilibrium moisture content (g/g dry base)

t :

Drying time (s)

W :

Mass of carrot slices (g)

W d :

Mass of dry matter in carrot slices (g)

W p :

Weight of samples before rehydration experiments (g)

W RR :

Weight of samples after rehydration experiments (g)

X 1 :

Drying temperature degree Celsius

X 2 :

O2 content

E :

Color difference

References

  • Anderson, K., & Lingnert, H. (1997). Influence of oxygen concentration on the storage stability of cream powder. LWT--Food Science and Technology, 30(2), 147–154.

    Article  Google Scholar 

  • AOAC. (1984). Official method of analysis. Arlington, VA: Association of Official Analytical Chemists. No.43.064.

  • AOAC. (1990). Official method of analysis. Arlington, VA: Association of Official Analytical Chemists. No.934.06.

  • Arikan, M. F., Ayhan, Z., Soysal, Y., & Esturk, O. (2012). Drying characteristics and quality parameters of microwave-dried grated carrots. Food and Bioprocess Technology, 5(8), 3217–3229.

    Article  Google Scholar 

  • Carcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2011). Improvement of convective drying of carrot by applying power ultrasound-influence of mass load density. Drying Technology, 29(2), 174–182.

    Article  CAS  Google Scholar 

  • Corrêa, J. L. G., Braga, A. M. P., Hochheim, M., & Silva, M. A. (2012). The influence of ethanol on the convective drying of unripe, ripe, and overripe bananas. Drying Technology, 30(8), 817–826.

    Article  Google Scholar 

  • Crank, J. (1975). Mathematics of diffusion (2nd ed.). London: Oxford University Press.

    Google Scholar 

  • Cui, Z. W., Xu, S. Y., & Sun, D. W. (2004). Effect of microwave-vacuum drying on the carotenoids retention of carrot slices and chlorophyll retention of Chinese chive leaves. Drying Technology, 22(3), 561–574.

    Article  Google Scholar 

  • Cui, Z. W., Li, C. Y., Song, C. F., & Song, Y. (2008). Combined microwave-vacuum and freeze drying of carrot and apple chips. Drying Technology, 26(12), 1517–1523.

    Article  CAS  Google Scholar 

  • Davey, M. W., Van, M. M., Inze, D., Sanmartin, M., Kannellis, A., Smirnoff, N., et al. (2000). Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7), 825–860.

    Article  CAS  Google Scholar 

  • Dev, S. R. S., Geetha, P., Orsat, V., Gariepy, Y., & Raghavan, G. S. V. (2011). Effects of microwave-assisted hot air drying and conventional hot air drying on the drying kinetics, color, rehydration, and volatiles of Moringa oleifera. Drying Technology, 29(12), 1452–1458.

    Article  CAS  Google Scholar 

  • Doungporn, S., Poomsa-ad, N., & Wiset, L. (2012). Drying equations of thai hom mali paddy by using hot air, carbon dioxide and nitrogen gases as drying media. Food and Bioproducts Processing, 90(2), 187–198.

    Article  CAS  Google Scholar 

  • Doymaz, I. (2004). Convective air drying characteristics of thin layer carrots. Journal of Food Engineering, 61(3), 359–364.

    Article  Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2006). Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technology, 24(1), 57–64.

    Article  CAS  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006a). Properties of modified atmosphere heat pump dried foods. Journal of Food Engineering, 74(3), 387–402.

    Article  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006b). Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technology, 24(1), 51–56.

    Article  CAS  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., Tian, M., & Yeo, K. L. (2006c). Drying of guava and papaya: impact of different drying methods. Drying Technology, 24(1), 77–87.

    Article  CAS  Google Scholar 

  • Kaya, A., Andin, O., & Demirtas, C. (2009). Experimental and theoretical analysis of drying carrots. Desalination, 237(1–3), 285–295.

    Article  CAS  Google Scholar 

  • Klieber, A., & Bagnato, A. (1999). Colour stability of paprika and chilli powder. Food Australia, 51(12), 592–596.

    Google Scholar 

  • Krokida, M. K., Tsami, E., & Maroulis, Z. B. (1998). Kinetics on color changes during drying of some fruits and vegetables. Drying Technology, 16(3), 667–685.

    Article  CAS  Google Scholar 

  • Kumar, N., Sarkar, B. C., & Shar, H. K. (2012). Mathematical modeling of thin layer hot air drying of carrot pomace. Journal of Food Science and Technology, 49(1), 33–41.

    Article  Google Scholar 

  • Leong, S. Y., & Oey, I. (2012). Effect of endogenous ascorbic acid oxidas activity and stability on vitamin C in carrots (Daucus carota subsp. sativus) during thermal treatment. Food Chemistry, 134(4), 2075–2085.

    Article  CAS  Google Scholar 

  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Research International, 31(2), 111–117.

    Article  Google Scholar 

  • Litvin, S., Mannheim, C. H., & Miltz, J. (1998). Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of Food Engineering, 36(1), 103–111.

    Article  Google Scholar 

  • Ma, W. P., Ni, Z. J., Li, H., & Chen, M. (2008). Changes of the main carotenoid pigment contents during the drying processes of the different harvest stage fruits of Lycium barbarum L. Agricultural Sciences in China, 7(3), 363–369.

    Article  Google Scholar 

  • Markowski, M. (1997). Air drying of vegetable: evaluation of mass transfer coefficient. Journal of Food Engineering, 34(1), 55–62.

    Article  Google Scholar 

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177–182.

    Article  Google Scholar 

  • Midilli, A. (2001). Determination of pistachio drying behavior and conditions in a solar drying system. International Journal of Energy Research, 25(8), 715–725.

    Article  Google Scholar 

  • Mihoubi, D., Timoumi, S., & Zagrouba, F. (2009). Modelling of convective drying of carrot slices with IR heat source. Chemical Engineering and Processing, 48(3), 808–815.

    Article  CAS  Google Scholar 

  • O’Neill, M. B., Rahman, M. S., Perera, C. O., Smith, B., & Melton, L. D. (1998). Colour and density of apple cubes dried in air and modified atmosphere. International Journal of Food Properties, 3(1), 197–205.

    Article  Google Scholar 

  • Pan, Y. K., Wang, X. Z., & Liu, X. D. (2007). Modern drying technology. Bei Jing: Chemical Industry Press.

    Google Scholar 

  • Prabhanjan, D. G., Ramaswamy, H. S., & Raghavan, G. S. V. (1995). Microwave-assisted convective air drying of thin layer carrots. Journal of Food Engineering, 25(2), 283–293.

    Article  Google Scholar 

  • Purkayastha, M. D., Nath, A., Deka, B. C., & Mahanta, C. L. (2013). Thin layer drying of tomato slices. Journal of Food Science and Technology, 50(4), 642–653.

    Article  Google Scholar 

  • Ramesh, M. N., Wolf, W., Tevini, D., & Jung, G. (1999). Studies on inert gas processing of vegetables. Journal of Food Engineering, 40(3), 199–205.

    Article  Google Scholar 

  • Ramesh, M. N., Wolf, W., Tevini, D., & Jung, G. (2001). Influence of processing parameters on the drying of spice paprika. Journal of Food Engineering, 49(1), 63–72.

    Article  Google Scholar 

  • Santos, P. H. S., & Silva, M. A. (2008). Retention of vitamin C in drying processing of fruits and vegetables—a review. Drying Technology, 26(12), 1421–1437.

    Article  CAS  Google Scholar 

  • Saxena, A., Maity, T., Raju, P. S., & Bawa, A. S. (2012). Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying. Food and Bioprocess Technology, 5, 672–679.

    Article  CAS  Google Scholar 

  • Sharma, G. P., Verma, R. C., & Pathare, P. B. (2005). Thin-layer infrared radiation drying of onion slices. Journal of Food Engineering, 67(3), 361–366.

    Article  Google Scholar 

  • Singh, P., Kulshrestha, K., & Kumar, S. (2013). Effect of storage on β-carotene content and microbial quality of dehydrated carrot products. Food Bioscience, 2, 39–45.

    Article  CAS  Google Scholar 

  • Sumnu, G., Turabi, E., & Oztop, M. (2005). Drying of carrots in microwave and halogen lamp-microwave combination ovens. LWT- Food Science and Technology, 38(5), 549–553.

    Article  CAS  Google Scholar 

  • Supmoon, N., & Noomhorm, A. (2013). Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technology, 31(1), 24–31.

    Article  CAS  Google Scholar 

  • Togrul, H. (2006). Suitable drying model for infrared drying of carrot. Journal of Food Engineering, 77(3), 610–619.

    Article  Google Scholar 

  • Wang, J., & Xi, Y. S. (2005). Drying characteristics and drying quality of carrot using a two-stage microwave process. Journal of Food Engineering, 68(4), 505–511.

    Article  Google Scholar 

  • Wu, J., Fan, J. J., Zhu, W. X., Ma, H. L., & Song, H. J. (2013). The effect of different drying methods on the content of beta-carotene in carrot. Academic Periodical of Farm Products Processing, 5, 22–24 (in Chinese).

    Google Scholar 

  • Yongsawatdigul, J., & Gunasekaran, S. (1996). Microwave-vacuum drying of cranberries. Part II: quality evaluation. Journal of Food Processing and Preservation, 20(2), 145–156.

    Article  Google Scholar 

  • Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1994). Densities, shrinkage and porosity of some vegetables during air drying. Drying Technology, 12(7), 1653–1666.

    Article  CAS  Google Scholar 

  • Zogzas, N. P., Maroulis, Z. B., & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(1), 2225–2253.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere appreciation to the National Natural Science Foundation of China (project 31171723) and the Ministry of Education in Henan Province (project 14B550005) for supporting this study financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wu, J., Miao, S. et al. Effect of a Modified Atmosphere on Drying and Quality Characteristics of Carrots. Food Bioprocess Technol 7, 2549–2559 (2014). https://doi.org/10.1007/s11947-014-1295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1295-9

Keywords

Navigation