Skip to main content
Log in

Discrimination of Edible Vegetable Oil Adulteration with Used Frying Oil by Low Field Nuclear Magnetic Resonance

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pleasant flavor and nutritional benefits of vegetable oils lead to an increase in their consumption amount. In addition, due to being apparently similar to commercially qualified vegetable oils (QVOs), used frying oil (UFO) is added into it to seek high profit by the unscrupulous traders. Thus, the authenticity assurance of commercial oil and fat products remains a challenge to scientists both in terms of its health and commercial perspectives. This work focused on using low field nuclear magnetic resonance (LF-NMR) to discriminate the adulteration of commercial corn, peanut, rapeseed, and soybean oils with two kinds of UFOs. The differences between the transverse relaxation distributions (T 2 distributions) of qualified oil and UFO were in the appearance of the third peak (A), which could be assigned to polymer products that were produced during the deep-fat frying process and the shift of T 2 value of the peaks. In addition, the A peak area accounted for the whole area of peaks linearly increasing along with the increase in adulteration proportion. Based on the changes of peak area, a simple linear equation was built and the determination coefficients (R 2) were all higher than 0.93. Therefore, as a rapid, convenient, and nondestructive method, LF-NMR application could be used to detect adulteration of vegetable oils with UFO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • AOCS. (2009a). Official method Cd 3 d-63. Sampling and analysis of commercial fats and oils: acid value. Champaign-Urbana. Illinois, USA: American Oil Chemists' Society.

    Google Scholar 

  • AOCS. (2009b). Official method Cd 1 d-92. Sampling and analysis of commercial fats and oils: iodine value, cyclohexane–acetic acid method. Champaign-Urbana. Illinois, USA: American Oil Chemists' Society.

    Google Scholar 

  • AOCS. (2003). Official method Cd 8b-90. Sampling and analysis of commercial fats and oils: peroxide value, acetic acid–isooctane method. Champaign-Urbana. Illinois, USA: American Oil Chemists' Society.

    Google Scholar 

  • Bakhmutov, V. I. (2004). Practical NMR relaxation for chemists. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Bhattacharya, A. B., Sajilata, M. J., Tiwari, S. R., & Singhal, R. S. (2008). Regeneration of thermally polymerized frying oils with adsorbents. Food Chemistry, 110(3), 562–570.

    Article  CAS  Google Scholar 

  • Blümich, B., Casanova, F., & Appelt, S. (2009). NMR at low magnetic fields. Chemical Physics Letters, 477(4–6), 231–240.

    Article  Google Scholar 

  • Blümich, B., Perlo, J., & Casanova, F. (2008). Mobile single-sided NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 52(4), 197–269.

    Article  Google Scholar 

  • Carr, H. Y., & Purcell, E. M. (1954). Effects of diffusion on free precession in nuclear magnetic resonance experiments. Physical Review, 94, 630–638.

    Article  CAS  Google Scholar 

  • Cataldo, A., Piuzzi, E., Cannazza, G., Benedetto, E. D., & Tarricone, L. (2010). Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement, 43(8), 1031–1039.

    Article  Google Scholar 

  • Chiavaro, E., Rodriguez-Estrada, M. T., Barnaba, C., Vittadini, E., Cerretani, L., & Bendini, A. (2008). Differential scanning calorimetry: a potential tool for discrimination of olive oil commercial categories. Analytica Chimica Acta, 625(2), 215–226.

    Article  CAS  Google Scholar 

  • Choe, E., & Min, D. B. (2007). Chemistry of deep-fat frying oils. Journal of Food Science, 72(5), 77–86.

    Article  Google Scholar 

  • Codex Alimentarius: codex standard for named vegetable oils. Codex STAN 210-1999, 2001.

  • Cunha, S. C., & Oliveira, M. B. P. P. (2006). Discrimination of vegetable oils by triacylglycerols evaluation of profile using HPLC/ELSD. Food Chemistry, 95(3), 518–524.

    Article  CAS  Google Scholar 

  • Fukui, H. (2008). The Theory of nuclear spin–spin couplings. In G. A. Webb (Ed.), Modern magnetic resonance (pp. 79–83). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Gan, H. L., Che Man, Y. B., Tan, C. P., NorAini, I., & Nazimah, S. A. H. (2005). Characterisation of vegetable oils by surface acoustic wave sensing electronic nose. Food Chemistry, 89(4), 507–518.

    Article  CAS  Google Scholar 

  • Gray, J. I. (1978). Measurement of lipid oxidation: a review. Journal of the American Oil Chemists' Society, 55(6), 539–546.

    Article  CAS  Google Scholar 

  • Hajimahmoodi, M., Heyden, V. Y., Sadeghi, N., Jannat, B., Oveisi, M. R., & Shahbazian, S. (2005). Gas-chromatographic fatty-acid fingerprints and partial least squares modeling as a basis for the simultaneous determination of edible oil mixtures. Talanta, 66(5), 1108–1116.

    Article  CAS  Google Scholar 

  • ICH Q2B, 1996 ICH Q2B., 1996. Validation of analytical procedures: methodology. Geneva.

  • Lerma-García, M. J., Ramis-Ramos, G., Herrero-Martínez, J. M., & Simó-Alfonso, E. F. (2010). Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chemistry, 118(1), 78–83.

    Article  Google Scholar 

  • Lorenzo, I. M., Pavón, J. L. P., Laespada, M. E. F., Pinto, C. G., & Cordero, B. M. (2002). Detection of adulterants in olive oil by headspace-mass spectrometry. Journal of Chromatography. A, 945(1–2), 221–230.

    Article  Google Scholar 

  • Meiboom, S., & Gill, D. (1958). Modified spin–echo method for measuring nuclear relaxation times. Review Science Instrument., 29, 688–691.

    Article  CAS  Google Scholar 

  • Micklander, E., Peshlov, B., Purslow, P. P., & Engelsen, S. B. (2002). NMR-cooking: monitoring the changes in meat during cooking by low-field 1H-NMR. Trends in Food Science & Technology, 13(9–10), 341–346.

    Article  CAS  Google Scholar 

  • Miyagi, A., Subramanian, R., & Nakajima, M. (2003). Membrane and additional adsorption processes for quality improvement of used frying oils. Journal of the American Oil Chemists' Society, 80(9), 927–932.

    Article  CAS  Google Scholar 

  • Paul, S., & Mittal, G. S. (1997). Regulating the use of degraded oil/fat in deep-fat/oil food frying. Critical Reviews in Food Science and Nutrition, 37(7), 635–662.

    Article  CAS  Google Scholar 

  • Pedersen, H. T., Munck, L., & Engelsen, S. B. (2000). Low-field 1H nuclear magnetic resonance and chemometrics combined for simultaneous determination of water, oil, and protein contents in oilseeds. Journal of America Oil Chemists' Society, 77(10), 1069–1076.

    Article  CAS  Google Scholar 

  • Poulli, K. I., Mousdis, G. A., & Georgiou, C. A. (2006). Synchronous fluorescence spectroscopy for quantitative determination of virgin olive oil adulteration with sunflower oil. Analytical and Bioanalytical Chemistry, 386(5), 1571–1575.

    Article  CAS  Google Scholar 

  • Price, W. S. (1997). Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part 1. Basic theory. Concepts in Magnetic Resonance, 9(5), 299–336.

    Article  CAS  Google Scholar 

  • Sahin, S., & Sumnu, S. G. (2009). Advances in deep-fat frying of foods. London, UK: Taylor & Francis.

    Google Scholar 

  • Shao, X. L., & Li, Y. F. (2010). Classification and prediction by LF NMR. Food and Bioprocess Technology. doi:10.1007/s11947-010-0455-9.

  • Slichter, C. P. (1990). Principles of magnetic resonance. Springer Series in Solid-State Sciences (3 rdth ed.). Berlin Heidelberg, Germany: Springer.

    Book  Google Scholar 

  • Smejkalová, D., & Piccolo, A. (2010). High-power gradient diffusion NMR spectroscopy for the rapid assessment of extra-virgin olive oil adulteration. Food Chemistry, 118(1), 153–158.

    Article  Google Scholar 

  • Sørland, G. H., Larsen, P. M., Lundby, F., Rudi, A. P., & Guiheneuf, T. (2004). Determination of total fat and moisture content in meat using low field NMR. Meat Science, 66(3), 543–550.

    Article  Google Scholar 

  • Tay, A., Singh, R. K., Krishnan, S. S., & Gore, J. P. (2002). Authentication of olive oil adulterated with vegetable oils using Fourier transform infrared spectroscopy. LWT- Food Science and Technology, 35(1), 99–103.

    Article  CAS  Google Scholar 

  • Thybo, A. K., Andersen, H. J., Karlsson, A. H., Dønstrup, S., & Stødkilde-Jørgensen, H. (2003). Low-field NMR relaxation and NMR-imaging as tools in differentiation between potato sample and determination of dry matter content in potatoes. Lebensmittel-Wissenschaft und Technologie, 36(3), 315–322.

    CAS  Google Scholar 

  • Todt, H., Burk, W., Guthausen, G., Guthausen, A., Kamlowski, A., & Schmalbein, D. (2001). Quality control with time-domain NMR. European Journal of Lipid Science and Technology, 103(12), 835–840.

    Article  CAS  Google Scholar 

  • Todt, H., Guthausen, G., Burk, W., Schmalbein, D., & Kamlowski, A. (2006a). Time-domain NMR in quality control: standard applications in food. In G. A. Webb (Ed.), Modern magnetic resonance (pp. 1739–1743). Dordrecht, Netherlands: Springer.

    Chapter  Google Scholar 

  • Todt, H., Guthausen, G., Burk, W., Schmalbein, D., & Kamlowski, A. (2006b). Water/moisture and fat analysis by time-domain NMR. Food Chemistry, 96(3), 436–440.

    Article  CAS  Google Scholar 

  • Viereck, N., Nørgaard, L., Bro, R., & Engelsen, S. B. (2008). Chemometric analysis of NMR data. In G. A. Webb (Ed.), Modern magnetic resonance (pp. 1833–1843). Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Wang, Z. D., Xiao, L. Z., & Liu, T. Y. (2004). A new method for multi-exponential inversion of NMR relaxation measurements. Science in China Series G: Physics Mechanics and Astronomy, 47(3), 265–276.

    Article  Google Scholar 

  • Zhang, G. W., Ni, Y. N., Churchill, J., & Kokot, S. (2006). Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics. Talanta, 70(2), 293–300.

    Article  CAS  Google Scholar 

  • Zhang, Q., Liu, C., Sun, Z. J., Hu, X. S., Shen, Q., & Wu, J. H. (2012). Authentication of edible vegetable oils adulterated with used frying oil by Fourier transform infrared spectroscopy. Food Chemistry, 132(3), 1607–1613.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project of oil quality and safety control technology research and industrialization demonstration (2009BADB9B08) of the “Eleventh Five-Year” Technology Support Program is acknowledged. The authors would like to thank the engineers who are working in Shanghai Niumag Corporation Ltd. for their kind help during the experiment and the equation derivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Saleh, A.S.M. & Shen, Q. Discrimination of Edible Vegetable Oil Adulteration with Used Frying Oil by Low Field Nuclear Magnetic Resonance. Food Bioprocess Technol 6, 2562–2570 (2013). https://doi.org/10.1007/s11947-012-0826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0826-5

Keywords

Navigation