Skip to main content
Log in

Multi-Objective Optimization of Osmotic–Ultrasonic Pretreatments and Hot-Air Drying of Quince Using Response Surface Methodology

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, application of a multi-objective optimization technique based on response surface methodology has been presented. Quince slices were dehydrated using osmotic dehydration with sucrose solutions at different concentration (40 and 60 Brix), processing time (1, 1.5, and 2 h), and ultrasonication time (0, 15, and 30 min) were the factors investigated with respect to water loss, solid gain, and weight reduction. Response surface methodology was used to determine the optimum processing conditions that yield maximum water loss and weight reduction and minimum solid gain during osmotic dehydration of quinces. Dehydrated quince slices at optimized osmo-ultrasound condition were then subjected to air-drying at 60 and 80 °C. Rehydration ratio, shrinkage, and moisture content of dried samples were regarded as responses to the non-thermal and air-drying conditions. Multi-objective optimization led to obtaining the best condition for production of dried quince slices with lowest moisture content, and shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alam, M. S., Amarjit, S., & Sawhney, B. K. (2010). Response Surface Optimization of Osmotic Dehydration Process for Aonla Slices. Journal of Food Science and Technology, 47(1), 47–54.

    Article  Google Scholar 

  • Antonio, G. C., Alves, D. G., Azoubel, P. M., Murr, F. E. X., & Park, K. J. (2008). Influence of Osmotic Dehydration and High Temperature Short Time Processes on Dried Sweet Potato (Ipomoea Batatas Lam.). Journal of Food Engineering, 84(3), 375–82.

    Article  Google Scholar 

  • AOAC. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, DC: AOAC.

    Google Scholar 

  • Ayensu, A. (1997). Dehydration of Food Crops Using a Solar Dryer with Convective Heat Flow. Solar Energy, 59(4–6), 121–26.

    Article  Google Scholar 

  • Azoubel, P. M., El-Aouar, Â. A., Tonon, R. V., Kurozawa, L. E., Antonio, G. C., Murr, F. E. X., et al. (2009). Effect of Osmotic Dehydration on the Drying Kinetics and Quality of Cashew Apple. International Journal of Food Science & Technology, 44(5), 980–86.

    Article  CAS  Google Scholar 

  • Barbanti, D., Mastrocola, D., & Severini, C. (1994). Air Drying of Plums. A Comparison among Twelve Cultivars. Sciences des aliments, 14(1), 61–73.

    Google Scholar 

  • Bchir, B., Besbes, S., Karoui, R., Attia, H., Paquot, M., & Blecker, C. (2011). Effect of Air-Drying Conditions on Physico-Chemical Properties of Osmotically Pre-Treated Pomegranate Seeds. Food and Bioprocess Technology. doi:10.1007/s11947-010-0469-31-13.

    Google Scholar 

  • Chakraborty, S. K., Kumbhar, B. K., & Sarkar, B. C. (2007). Process Parameter Optimization for Instant Pigeonpea Dhal Using Response Surface Methodology. Journal of Food Engineering, 81(1), 171–78.

    Article  CAS  Google Scholar 

  • Corzo, O., Bracho, N., Vasquez, A., & Pereira, A. (2008). Optimization of a Thin Layer Drying Process for Coroba Slices. Journal of Food Engineering, 85(3), 372–80.

    Article  Google Scholar 

  • Corzo, O., & Gomez, E. R. (2004). Optimization of Osmotic Dehydration of Cantaloupe Using Desired Function Methodology. Journal of Food Engineering, 64(2), 213–19.

    Article  Google Scholar 

  • De la Fuente-Blanco, S., de Sarabia Riera-Franco, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). "Food Drying Process by Power Ultrasound". Ultrasonics, 44, e523–e27.

    Article  Google Scholar 

  • Emadzadeh, B., Razavi, S. M. A., & Mahallati, M. N. (2011). Effects of Fat Replacers and Sweeteners on the Time-Dependent Rheological Characteristics and Emulsion Stability of Low-Calorie Pistachio Butter: A Response Surface Methodology. Food and Bioprocess Technology. doi:10.1007/s11947-010-0490-61-11.

    Google Scholar 

  • Erbay, Z., & Icier, F. (2009). Optimization of Hot Air Drying of Olive Leaves Using Response Surface Methodology. Journal of Food Engineering, 91(4), 533–41.

    Article  CAS  Google Scholar 

  • Eren, I., & Kaymak-Ertekin, F. (2007). Optimization of Osmotic Dehydration of Potato Using Response Surface Methodology. Journal of Food Engineering, 79(1), 344–52.

    Article  Google Scholar 

  • FAO. (2010) http://Faostat.Fao.Org/

  • Fermin, W. J., & Corzo, O. (2005). Optimization of Vacuum Pulse Osmotic Dehydration of Cantaloupe Using Response Surface Methodology. Journal of Food Processing and Preservation, 29(1), 20–32.

    Article  Google Scholar 

  • Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of Osmotic Dehydration and Ultrasound Pre-Treatment on Cell Structure: Melon Dehydration. LWT Food Science and Technology, 41(4), 604–10.

    Article  CAS  Google Scholar 

  • Garrote, R. L., Coutaz, V. R., Luna, J. A., Silva, E. R., & Bertone, R. A. (1993). Optimizing Processing Conditions for Chemical Peeling of Potatoes Using Response Surface Methodology. Journal of Food Science, 58(4), 821–26.

    Article  CAS  Google Scholar 

  • Guillou, A. A., & Floros, J. D. (1993). Multiresponse Optimization Minimizes Salt in Natural Cucumber Fermentation and Storage. Journal of Food Science, 58(6), 1381–89.

    Article  CAS  Google Scholar 

  • Johnson, P. N., Brennan, J. G., & Addo-Yobo, F. Y. (1998). Air-Drying Characteristics of Plantain (Musa Aab). Journal of Food Engineering, 37(2), 233–42.

    Article  Google Scholar 

  • Ko, B., Eren, I., & Kaymak Ertekin., F. (2008). Modelling Bulk Density, Porosity and Shrinkage of Quince During Drying: The Effect of Drying Method. Journal of Food Engineering, 85(3), 340–49.

    Article  Google Scholar 

  • Lenart, A. (1996). Osmo-Convective Drying of Fruits and Vegetables: Technology and Application. Drying Technology, 14(2), 391–413.

    Article  CAS  Google Scholar 

  • Lin, T. M., Durance, T. D., & Scaman, C. H. (1998). Characterization of Vacuum Microwave, Air and Freeze Dried Carrot Slices. Food Research International, 31(2), 111–17.

    Article  Google Scholar 

  • Lombard, G. E., Oliveira, J. C., Fito, P., & Andrés, A. (2008). Osmotic Dehydration of Pineapple as a Pre-Treatment for Further Drying. Journal of Food Engineering, 85(2), 277–84.

    Article  Google Scholar 

  • Madamba, P. S. (2002). The Response Surface Methodology: An Application to Optimize Dehydration Operations of Selected Agricultural Crops. Lebensmittel-Wissenschaft und Technologie, 35(7), 584–92.

    CAS  Google Scholar 

  • Pani, P., Leva, A. A., Riva, M., Maestrelli, A., & Torreggiani, D. (2008). Influence of an Osmotic Pre-Treatment on Structure-Property Relationships of Air-Dehydrated Tomato Slices. Journal of Food Engineering, 86(1), 105–12.

    Article  CAS  Google Scholar 

  • Povey, M. J. W., & Mason, T. J. (1998). Ultrasound in Food Processing. Dordrecht: Springer.

    Google Scholar 

  • Sharma, G. P., & Prasad, S. (2006). Optimization of Process Parameters for Microwave Drying of Garlic Cloves. Journal of Food Engineering, 75(4), 441–46.

    Article  Google Scholar 

  • Shi, Q. L., Xue, C. H., Zhao, Y., Li, Z. J., Wang, X. Y., & Luan, D. L. (2008). Optimization of Processing Parameters of Horse Mackerel (Trachurus Japonicus) Dried in a Heat Pump Dehumidifier Using Response Surface Methodology. Journal of Food Engineering, 87(1), 74–81.

    Article  Google Scholar 

  • Sosa, N., Salvatori, D. M., & Schebor, C. (2011). Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food and Bioprocess Technology. doi:10.1007/s11947-010-0468-41-13.

    Google Scholar 

  • Tarleton, E. S. (1992). The Role of Field-Assisted Techniques in Solid/Liquid Separation. Filtration & Separation, 29(3), 246–52.

    Article  CAS  Google Scholar 

  • Tarleton, E. S., & Wakeman, R. J. (1998). Ultrasonically Assisted Separation Process. Ultrasounds in Food Processing. London: Blackie.

    Google Scholar 

  • Varnalis, A. I., Brennan, J. G., MacDougall, D. B., & Gilmour, S. G. (2004). Optimisation of High Temperature Puffing of Potato Cubes Using Response Surface Methodology. Journal of Food Engineering, 61(2), 153–63.

    Article  Google Scholar 

  • Yao, N., Floros, J. D., & Seetharaman, K. (2007). Optimisation of Hard Pretzel Production. International Journal of Food Science & Technology, 42(3), 269–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Noshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noshad, M., Mohebbi, M., Shahidi, F. et al. Multi-Objective Optimization of Osmotic–Ultrasonic Pretreatments and Hot-Air Drying of Quince Using Response Surface Methodology. Food Bioprocess Technol 5, 2098–2110 (2012). https://doi.org/10.1007/s11947-011-0577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0577-8

Keywords

Navigation