Skip to main content

Advertisement

Log in

Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis—Similarities and Differences

  • Recent Advances in Large Vessel Vasculitis (C Dejaco and C Duftner, Section Editors)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are auto-inflammatory and autoimmune diseases with a highly selective tissue tropism for medium and large arteries. In both diseases, CD4+ T cells and macrophages form granulomatous lesions within the arterial wall, a tissue site normally protected by immune privilege. Vascular lesions can be accompanied by an extravascular component, typically an intense hepatic acute phase response that produces well-known laboratory abnormalities, e.g., elevated ESR and CRP. It is unclear whether GCA and TAK lie on a spectrum of disease or whether they represent fundamentally different disease processes.

Recent Findings

GCA and TAK share many clinical features, but there are substantial differences in genetics, epidemiology, disease mechanisms, response to treatment, and treatment complications that give rise to different disease trajectories. A significant difference lies in the composition of the wall-infiltrating immune cell compartment, which in TAK includes a significant population of CD8+ T cells as well as natural killer cells, specifying disparate disease effector pathways mediating tissue damage and vessel wall remodeling.

Summary

Despite the similarities in tissue tropism and histomorphology, GCA and TAK are two distinct vasculitides that rely on separate disease mechanisms and require disease-specific approaches in diagnosis and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Cuffy MC, Silverio AM, Qin L, Wang Y, Eid R, Brandacher G, et al. Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege. J Immunol. 2007;179:5246–54.

    CAS  PubMed  Google Scholar 

  2. Weyand CM, Goronzy JJ. Medium- and large-vessel vasculitis. N Engl J Med. 2003;349:160–9.

    CAS  PubMed  Google Scholar 

  3. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.

    CAS  PubMed  Google Scholar 

  4. Weyand CM, Goronzy JJ. Immune mechanisms in medium and large-vessel vasculitis. Nat Rev Rheumatol. 2013;9:731–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kermani TA. Takayasu arteritis and giant cell arteritis: are they a spectrum of the same disease? Int J Rheum Dis. 2019;22(Suppl 1):41–8.

    PubMed  Google Scholar 

  6. Yoshida M, Watanabe R, Ishii T, Machiyama T, Akita K, Fujita Y, et al. Retrospective analysis of 95 patients with large vessel vasculitis: a single center experience. Int J Rheum Dis. 2016;19:87–94.

    PubMed  Google Scholar 

  7. Kang EJ, Kim SM, Choe YH, Lee GY, Lee KN, Kim DK. Takayasu arteritis: assessment of coronary arterial abnormalities with 128-section dual-source CT angiography of the coronary arteries and aorta. Radiology. 2014;270:74–81.

    PubMed  Google Scholar 

  8. Subramanyan R, Joy J, Balakrishnan KG. Natural history of aortoarteritis (Takayasu’s disease). Circulation. 1989;80:429–37.

    CAS  PubMed  Google Scholar 

  9. Watanabe Y, Miyata T, Tanemoto K. Current clinical features of new patients with Takayasu arteritis observed from cross-country research in Japan: age and sex specificity. Circulation. 2015;132:1701–9.

    PubMed  Google Scholar 

  10. Chasset F, Frances C. Cutaneous manifestations of medium- and large-vessel vasculitis. Clin Rev Allergy Immunol. 2017;53:452–68.

    CAS  PubMed  Google Scholar 

  11. Yoshifuji H. Pathophysiology of large vessel vasculitis and utility of interleukin-6 inhibition therapy. Mod Rheumatol. 2019;29:287–93.

    CAS  PubMed  Google Scholar 

  12. Watanabe R, Ishii T, Nakamura K, Shirai T, Fujii H, Saito S, et al. Ulcerative colitis is not a rare complication of Takayasu arteritis. Mod Rheumatol. 2014;24:372–3.

    PubMed  Google Scholar 

  13. Costello JM Jr, Nicholson WJ. Severe aortic regurgitation as a late complication of temporal arteritis. Chest. 1990;98:875–7.

    PubMed  Google Scholar 

  14. Ghinoi A, Pipitone N, Nicolini A, Boiardi L, Silingardi M, Germano G, et al. Large-vessel involvement in recent-onset giant cell arteritis: a case-control colour-Doppler sonography study. Rheumatology (Oxford). 2012;51:730–4.

    Google Scholar 

  15. Agard C, Barrier JH, Dupas B, Ponge T, Mahr A, Fradet G, et al. Aortic involvement in recent-onset giant cell (temporal) arteritis: a case-control prospective study using helical aortic computed tomodensitometric scan. Arthritis Rheum. 2008;59:670–6.

    PubMed  Google Scholar 

  16. Prieto-Gonzalez S, Arguis P, Garcia-Martinez A, et al. Large vessel involvement in biopsy-proven giant cell arteritis: prospective study in 40 newly diagnosed patients using CT angiography. Ann Rheum Dis. 2012;71:1170–6.

    PubMed  Google Scholar 

  17. Saleh M, Turesson C, Englund M, Merkel PA, Mohammad AJ. Visual complications in patients with biopsy-proven giant cell arteritis: a population-based study. J Rheumatol. 2016;43:1559–65.

    PubMed  PubMed Central  Google Scholar 

  18. Kermani TA, Sreih AG, Cuthbertson D, Carette S, Hoffman GS, Khalidi NA, et al. Evaluation of damage in giant cell arteritis. Rheumatology (Oxford). 2018;57:322–8.

    Google Scholar 

  19. Chen JJ, Leavitt JA, Fang C, Crowson CS, Matteson EL, Warrington KJ. Evaluating the incidence of arteritic ischemic optic neuropathy and other causes of vision loss from giant cell arteritis. Ophthalmology. 2016;123:1999–2003.

    PubMed  PubMed Central  Google Scholar 

  20. Weyand CM, Goronzy JJ. Clinical practice. Giant-cell arteritis and polymyalgia rheumatica. N Engl J Med. 2014;371:50–7.

    PubMed  PubMed Central  Google Scholar 

  21. Weyand CM, Watanabe R, Zhang H, Akiyama M, Berry GJ, Goronzy JJ. Cytokines, growth factors and proteases in medium and large vessel vasculitis. Clin Immunol. 2019;206:33–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gribbons KB, Ponte C, Carette S, et al. Patterns of arterial disease in Takayasu’s arteritis and giant cell arteritis. Arthritis Care Res. 2019. https://doi.org/10.1002/acr.24055.

  23. Edwards SL, Baker V, Boswell GE, et al. A rare case of Takayasu arteritis with intracranial involvement, aortic valvulitis, and giant cell aortitis. J Clin Rheumatol. 2018; December 28, 2018 - Volume Publish Ahead of Print - Issue - https://doi.org/10.1097/RHU.0000000000000960.

  24. Rushing L, Schoen FJ, Hirsch A, Lie JT. Granulomatous aortic valvulitis associated with aortic insufficiency in Takayasu aortitis. Hum Pathol. 1991;22:1050–3.

    CAS  PubMed  Google Scholar 

  25. Miller DV, Isotalo PA, Weyand CM, Edwards WD, Aubry MC, Tazelaar HD. Surgical pathology of noninfectious ascending aortitis: a study of 45 cases with emphasis on an isolated variant. Am J Surg Pathol. 2006;30:1150–8.

    PubMed  Google Scholar 

  26. Wen Z, Shen Y, Berry G, Shahram F, Li Y, Watanabe R, et al. The microvascular niche instructs T cells in large vessel vasculitis via the VEGF-Jagged1-Notch pathway. Sci Transl Med. 2017;9:eaal3322.

    PubMed  PubMed Central  Google Scholar 

  27. Watanabe R, Maeda T, Zhang H, Berry GJ, Zeisbrich M, Brockett R, et al. MMP (matrix metalloprotease)-9-producing monocytes enable T cells to invade the vessel wall and cause vasculitis. Circ Res. 2018;123:700–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. •• Zhang H, Watanabe R, Berry GJ, et al. Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci U S A. 2017;114:E970–9. This is the first report that patients with giant cell arteritis have a disease-relevant defect in the immunoinhibitory PD-1/PD-L1 checkpoint.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Watanabe R, Zhang H, Berry G, Goronzy JJ, Weyand CM. Immune checkpoint dysfunction in large and medium vessel vasculitis. Am J Physiol Heart Circ Physiol. 2017;312:H1052–9.

    PubMed  PubMed Central  Google Scholar 

  30. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    PubMed  Google Scholar 

  31. Chen DS, Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017;541:321–30.

    CAS  PubMed  Google Scholar 

  32. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brekke LK, Fevang BS, Diamantopoulos AP, et al. Survival and death causes of patients with giant cell arteritis in Western Norway 1972-2012: a retrospective cohort study. Arthritis Res Ther. 2019;21:154.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang H, Watanabe R, Berry GJ, Nadler SG, Goronzy JJ, Weyand CM. CD28 signaling controls metabolic fitness of pathogenic T cells in medium and large vessel vasculitis. J Am Coll Cardiol. 2019;73:1811–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang H, Watanabe R, Berry GJ, Tian L, Goronzy JJ, Weyand CM. Inhibition of JAK-STAT signaling suppresses pathogenic immune responses in medium and large vessel vasculitis. Circulation. 2018;137:1934–48.

    CAS  PubMed  Google Scholar 

  37. Maleszewski JJ, Younge BR, Fritzlen JT, Hunder GG, Goronzy JJ, Warrington KJ, et al. Clinical and pathological evolution of giant cell arteritis: a prospective study of follow-up temporal artery biopsies in 40 treated patients. Mod Pathol. 2017;30:788–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z, et al. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest. 2016;126:1953–67.

    PubMed  PubMed Central  Google Scholar 

  39. Suzuki M, Jagger AL, Konya C, Shimojima Y, Pryshchep S, Goronzy JJ, et al. CD8+CD45RA+CCR7+FOXP3+ T cells with immunosuppressive properties: a novel subset of inducible human regulatory T cells. J Immunol. 2012;189:2118–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goronzy JJ, Weyand CM. Mechanisms underlying T cell ageing. Nat Rev Immunol. 2019;19:573–83.

    CAS  PubMed  Google Scholar 

  41. Goronzy JJ, Hu B, Kim C, Jadhav RR, Weyand CM. Epigenetics of T cell aging. J Leukoc Biol. 2018;104:691–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017;46:364–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heath JJ, Grant MD. The immune response against human cytomegalovirus links cellular to systemic senescence. Cells. 2020;9:766.

  44. Jergovic M, Contreras NA, Nikolich-Zugich J. Impact of CMV upon immune aging: facts and fiction. Med Microbiol Immunol. 2019;208:263–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dejaco C, Duftner C, Al-Massad J, et al. NKG2D stimulated T-cell autoreactivity in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2013;72:1852–9.

    CAS  PubMed  Google Scholar 

  46. Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid arthritis. Curr Opin Rheumatol. 2014;26:93–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Weyand CM, Goronzy JJ. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev. 2020;294:177–87.

    CAS  PubMed  Google Scholar 

  48. •• Watanabe R, Hilhorst M, Zhang H, et al. Glucose metabolism controls disease-specific signatures of macrophage effector functions. JCI Insight. 2018;3:e123047. This study defines a metabolic signature for macrophages in patients with giant cell arteritis, supporting the concept that pro-inflammatory macrophages could be re-educated through metabolic interference.

  49. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213:337–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tesauro M, Mauriello A, Rovella V, Annicchiarico-Petruzzelli M, Cardillo C, Melino G, et al. Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med. 2017;281:471–82.

    CAS  PubMed  Google Scholar 

  52. Deng J, Younge BR, Olshen RA, Goronzy J̈J, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121:906–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Saadoun D, Garrido M, Comarmond C, Desbois AC, Domont F, Savey L, et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheum. 2015;67:1353–60.

    CAS  Google Scholar 

  54. Terao C, Yoshifuji H, Kimura A, Matsumura T, Ohmura K, Takahashi M, et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am J Hum Genet. 2013;93:289–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakajima T, Yoshifuji H, Shimizu M, Kitagori K, Murakami K, Nakashima R, et al. A novel susceptibility locus in the IL12B region is associated with the pathophysiology of Takayasu arteritis through IL-12p40 and IL-12p70 production. Arthritis Res Ther. 2017;19:197.

    PubMed  PubMed Central  Google Scholar 

  56. Watanabe R, Hosgur E, Zhang H, Wen Z, Berry G, Goronzy JJ, et al. Pro-inflammatory and anti-inflammatory T cells in giant cell arteritis. Joint Bone Spine. 2017;84:421–6.

    CAS  PubMed  Google Scholar 

  57. Seko Y, Minota S, Kawasaki A, Shinkai Y, Maeda K, Yagita H, et al. Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis. J Clin Invest. 1994;93:750–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Terao C, Yoshifuji H, Matsumura T, Naruse TK, Ishii T, Nakaoka Y, et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc Natl Acad Sci U S A. 2018;115:13045–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kurata A, Saito A, Hashimoto H, Fujita K, Ohno SI, Kamma H, et al. Difference in immunohistochemical characteristics between Takayasu arteritis and giant cell arteritis: it may be better to distinguish them in the same age. Mod Rheumatol. 2019;29:992–1001.

    CAS  PubMed  Google Scholar 

  60. Matsumoto K, Suzuki K, Yoshimoto K, Seki N, Tsujimoto H, Chiba K, et al. Significant association between clinical characteristics and changes in peripheral immuno-phenotype in large vessel vasculitis. Arthritis Res Ther. 2019;21:304.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. De Smit E, Lukowski SW, Anderson L, et al. Longitudinal expression profiling of CD4+ and CD8+ cells in patients with active to quiescent giant cell arteritis. BMC Med Genet. 2018;11:61.

    Google Scholar 

  62. Zhang J, Zhao L, Wang J, Cheng Z, Sun M, Zhao J, et al. Targeting mechanistic target of rapamycin complex 1 restricts proinflammatory T cell differentiation and ameliorates Takayasu arteritis. Arthritis Rheum. 2020;72:303–15.

    CAS  Google Scholar 

  63. Watanabe R. CD4+ T cells as key players in the immunopathology of Takayasu arteritis: comment on the article by. Arthritis Rheum. 2020;72:696–7.

    Google Scholar 

  64. Arnaud L, Haroche J, Mathian A, Gorochov G, Amoura Z. Pathogenesis of Takayasu’s arteritis: a 2011 update. Autoimmun Rev. 2011;11:61–7.

    CAS  PubMed  Google Scholar 

  65. •• Mutoh T, Shirai T, Ishii T, et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis. Nat Commun. 2020;11:1253. This study has identified endothelial protein C receptor (EPCR) and scavenger receptor class B type 1 (SR-BI) as autoantigens on endothelial cells in patients with Takayasu arteritis. Bound autoantibodies promote inflammation by blocking the negative regulatory role of the two receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pazzola G, Muratore F, Pipitone N, Crescentini F, Cacoub P, Boiardi L, et al. Rituximab therapy for Takayasu arteritis: a seven patients experience and a review of the literature. Rheumatology (Oxford). 2018;57:1151–5.

    CAS  Google Scholar 

  67. Ramirez FD, Jamison BM, Hibbert B. Infectious aortitis. Int Heart J. 2016;57:645–8.

    PubMed  Google Scholar 

  68. Bossone E, Pluchinotta FR, Andreas M, Blanc P, Citro R, Limongelli G, et al. Aortitis. Vasc Pharmacol. 2016;80:1–10.

    CAS  Google Scholar 

  69. Keser G, Aksu K. Diagnosis and differential diagnosis of large-vessel vasculitides. Rheumatol Int. 2019;39:169–85.

    PubMed  Google Scholar 

  70. Bowen CJ, Calderon Giadrosic JF, Burger Z, et al. Targetable cellular signaling events mediate vascular pathology in vascular Ehlers-Danlos syndrome. J Clin Invest. 2020;130:686–98.

    CAS  PubMed  Google Scholar 

  71. Kasashima F, Kawakami K, Matsumoto Y, Endo M, Kasashima S, Kawashima A. IgG4-related arterial disease. Ann Vasc Dis. 2018;11:72–7.

    PubMed  PubMed Central  Google Scholar 

  72. Akiyama M, Kaneko Y, Takeuchi T. Characteristics and prognosis of IgG4-related periaortitis/periarteritis: a systematic literature review. Autoimmun Rev. 2019;18:102354.

    CAS  PubMed  Google Scholar 

  73. Oshima Y, Takahashi S, Tani K, Tojo A. Granulocyte colony-stimulating factor-associated aortitis in the Japanese Adverse Drug Event Report database. Cytokine. 2019;119:47–51.

    CAS  PubMed  Google Scholar 

  74. Parodis I, Dani L, Notarnicola A, Martenhed G, Fernström P, Matikas A, et al. G-CSF-induced aortitis: two cases and review of the literature. Autoimmun Rev. 2019;18:615–20.

    CAS  PubMed  Google Scholar 

  75. Salem JE, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:1579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Goldstein BL, Gedmintas L, Todd DJ. Drug-associated polymyalgia rheumatica/giant cell arteritis occurring in two patients after treatment with ipilimumab, an antagonist of ctla-4. Arthritis Rheum. 2014;66:768–9.

    Google Scholar 

  77. Daxini A, Cronin K, Sreih AG. Vasculitis associated with immune checkpoint inhibitors-a systematic review. Clin Rheumatol. 2018;37:2579–84.

    PubMed  Google Scholar 

  78. Roy AK, Tathireddy HR, Roy M. Aftermath of induced inflammation: acute periaortitis due to nivolumab therapy. BMJ Case Rep. 2017. https://doi.org/10.1136/bcr-2017-221852.

Download references

Funding

This work was supported by the National Institutes of Health (R01 AR042547, R01 HL117913, R01 AI108906, R01 HL142068, and P01 HL129941 to CMW and R01 AI108891, R01 AG045779, U19 AI057266, R01 AI129191, and I01 BX001669 to JJG) and with resources and the use of facilities at the Palo Alto Veterans Administration Healthcare System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia M. Weyand.

Ethics declarations

Conflict of Interest

The authors have declared that no conflict of interest exists.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Recent Advances in Large Vessel Vasculitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, R., Berry, G.J., Liang, D.H. et al. Pathogenesis of Giant Cell Arteritis and Takayasu Arteritis—Similarities and Differences. Curr Rheumatol Rep 22, 68 (2020). https://doi.org/10.1007/s11926-020-00948-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00948-x

Keywords

Navigation