Skip to main content

Advertisement

Log in

Orthobiologics in the Augmentation of Osteoporotic Fractures

  • Orthopedic Management of Fractures (D Little and T Miclau, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined—the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Giannoudis P et al. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38 Suppl 1:S90–9.

    Article  PubMed  Google Scholar 

  2. Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res. 1983;174:58–68.

    PubMed  Google Scholar 

  3. Ramoshebi LN et al. Tissue engineering: TGF-beta superfamily members and delivery systems in bone regeneration. Expert Rev Mol Med. 2002;4(20):1–11.

    Article  PubMed  Google Scholar 

  4. Kirk JF et al. Osteoconductivity and osteoinductivity of NanoFUSE((R)) DBM. Cell Tissue Bank. 2013;14(1):33–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Moore ST et al. Osteoconductivity and osteoinductivity of Puros(R) DBM putty. J Biomater Appl. 2011;26(2):151–71.

    Article  PubMed  CAS  Google Scholar 

  6. Han B, Yang Z, Nimni M. Effects of moisture and temperature on the osteoinductivity of demineralized bone matrix. J Orthop Res. 2005;23(4):855–61.

    Article  PubMed  Google Scholar 

  7. Hierholzer C et al. Plate fixation of ununited humeral shaft fractures: effect of type of bone graft on healing. J Bone Joint Surg Am. 2006;88(7):1442–7.

    Article  PubMed  Google Scholar 

  8. Wilkins RM, Chimenti BT, Rifkin RM. Percutaneous treatment of long bone nonunions: the use of autologous bone marrow and allograft bone matrix. Orthopedics. 2003;26(5 Suppl):s549–54.

    PubMed  Google Scholar 

  9. Peters CL et al. Biological effects of calcium sulfate as a bone graft substitute in ovine metaphyseal defects. J Biomed Mater Res A. 2006;76(3):456–62.

    Article  PubMed  CAS  Google Scholar 

  10. Yu B et al. Treatment of tibial plateau fractures with high strength injectable calcium sulphate. Int Orthop. 2009;33(4):1127–33.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence? J Orthop Trauma. 2010;24 Suppl 1:S46–51.

    Article  PubMed  Google Scholar 

  12. Kuhne JH et al. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Orthop Scand. 1994;65(3):246–52.

    Article  PubMed  CAS  Google Scholar 

  13. De Long Jr WG et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89(3):649–58.

    Article  PubMed  Google Scholar 

  14. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop Relat Res. 1992;276:291–8.

    PubMed  Google Scholar 

  15. Watson JT. Overview of biologics. J Orthop Trauma. 2005;19(10 Suppl):S14–6.

    Article  PubMed  Google Scholar 

  16. Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures. Orthopedics. 2004;27(1 Suppl):s103–7.

    PubMed  Google Scholar 

  17. Mauffrey C et al. Incidence and pattern of technical complications in balloon-guided osteoplasty for depressed tibial plateau fractures: a pilot study in 20 consecutive patients. Patient Saf Surg. 2013;7(1):8. This study looked at the complications and steep learning curved involved with the use of inflation bone tamps to reduce depressed tibial plateau fractures.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Szpalski M, Gunzburg R. Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics. 2002;25(5 Suppl):s601–9.

    PubMed  Google Scholar 

  19. Goff T, Kanakaris NK, Giannoudis PV. Use of bone graft substitutes in the management of tibial plateau fractures. Injury. 2013;44 Suppl 1:S86–94. Review of 19 studies comparing various bone graft substitutes which showed greater tolerance of early weight bearing and improved early functional outcomes with injectable calcium phosphate.

    Article  PubMed  Google Scholar 

  20. Bajammal SS et al. The use of calcium phosphate bone cement in fracture treatment. A meta-analysis of randomized trials. J Bone Joint Surg Am. 2008;90(6):1186–96.

    Article  PubMed  Google Scholar 

  21. Kim JK, Koh YD, Kook SH. Effect of calcium phosphate bone cement augmentation on volar plate fixation of unstable distal radial fractures in the elderly. J Bone Joint Surg Am. 2011;93(7):609–14. Augmentation of metaphyseal defects with calcium phosphate bone cement after volar locking plate fixation offered no benefit over volar locking plate fixation alone in elderly patients with an unstable distal radial fracture.

    Article  PubMed  Google Scholar 

  22. Suhm N, Gisep A. Injectable bone cement augmentation for the treatment of distal radius fractures: a review. J Orthop Trauma. 2008;22(8 Suppl):S121–5.

    Article  PubMed  Google Scholar 

  23. Lindner T et al. Fractures of the hip and osteoporosis: the role of bone substitutes. J Bone Joint Surg (Br). 2009;91(3):294–303.

    Article  CAS  Google Scholar 

  24. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants. 2003;18(1):93–103.

    PubMed  Google Scholar 

  25. Friedlaender GE et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg AmSuppl. 2001;83(A Suppl 1(Pt 2)):S151–8.

    Google Scholar 

  26. Blokhuis TJ, Calori GM, Schmidmaier G. Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury. 2013;44 Suppl 1:S40–2.

    Article  PubMed  Google Scholar 

  27. Lad SP et al. Cancer after spinal fusion: the role of bone morphogenetic protein. Neurosurgery. 2013;73(3):440–9. This study showed increased incidence of benign tumors especially of the nervous system in lumbar fusion patients exposed to BMP.

    Article  PubMed  Google Scholar 

  28. Morris CD, Einhorn TA. Bisphosphonates in orthopaedic surgery. J Bone Joint Surg Am. 2005;87(7):1609–18.

    Article  PubMed  Google Scholar 

  29. Amanat N et al. Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res. 2007;22(6):867–76.

    Article  PubMed  CAS  Google Scholar 

  30. Lyles KW et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.

    Article  PubMed  CAS  Google Scholar 

  31. Li J et al. Concentration of bisphosphonate (incadronate) in callus area and its effects on fracture healing in rats. J Bone Miner Res. 2000;15(10):2042–51.

    Article  PubMed  CAS  Google Scholar 

  32. Amanat N et al. A single systemic dose of pamidronate improves bone mineral content and accelerates restoration of strength in a rat model of fracture repair. J Orthop Res. 2005;23(5):1029–34.

    Article  PubMed  CAS  Google Scholar 

  33. Adolphson P et al. Clodronate increases mineralization of callus after Colles’ fracture: a randomized, double-blind, placebo-controlled, prospective trial in 32 patients. Acta Orthop Scand. 2000;71(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt GA et al. Risks and benefits of long-term bisphosphonate therapy. Am J Health Syst Pharm. 2010;67(12):994–1001.

    Article  PubMed  CAS  Google Scholar 

  35. Watts NB. Long-term risks of bisphosphonate therapy. Arq Bras Endocrinol Metabol. 2014;58(5):523–9.

    Article  PubMed  Google Scholar 

  36. Beninati F, Pruneti R, Ficarra G. Bisphosphonate-related osteonecrosis of the jaws (Bronj). Med Oral Patol Oral Cir Bucal. 2013;18(5):e752–8.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Janovska Z. Bisphosphonate-related osteonecrosis of the jaws. A severe side effect of bisphosphonate therapy. Acta Med (Hradec Kralove). 2012;55(3):111–5.

    CAS  Google Scholar 

  38. Egol KA et al. Healing delayed but generally reliable after bisphosphonate-associated complete femur fractures treated with IM nails. Clin Orthop Relat Res. 2014;472(9):2728–34.

    Article  PubMed  Google Scholar 

  39. Xue D et al. Do bisphosphonates affect bone healing? A meta-analysis of randomized controlled trials. J Orthop Surg Res. 2014;9:45. This recent meta-analysis looked at eight RCTs and found no delay in fracture healing with bisphosphonate therapy and recommended infusion after fracture fixation and lumbar fusion.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Moroni A et al. Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am. 2007;89(1):96–101.

    Article  PubMed  Google Scholar 

  41. Moen MD, Keam SJ. Denosumab: a review of its use in the treatment of postmenopausal osteoporosis. Drugs Aging. 2011;28(1):63–82.

    Article  PubMed  CAS  Google Scholar 

  42. Cummings SR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  PubMed  CAS  Google Scholar 

  43. Adami S et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am. 2012;94(23):2113–9. The three year results of this placebo-controlled trial showed no evidence of impaired healing in 303 patients treated with 60mg Denosumab showed no delay in fracture healing or increased complications even when administered immediately after surgery.

    Article  PubMed  Google Scholar 

  44. Flick LM et al. Effects of receptor activator of NFkappaB (RANK) signaling blockade on fracture healing. J Orthop Res. 2003;21(4):676–84.

    Article  PubMed  CAS  Google Scholar 

  45. Ulrich-Vinther M, Andreassen TT. Osteoprotegerin treatment impairs remodeling and apparent material properties of callus tissue without influencing structural fracture strength. Calcif Tissue Int. 2005;76(4):280–6.

    Article  PubMed  CAS  Google Scholar 

  46. Wu CC et al. Enhanced healing of sacral and pubic insufficiency fractures by teriparatide. J Rheumatol. 2012;39(6):1306–7.

    Article  PubMed  CAS  Google Scholar 

  47. Alkhiary YM et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1-34). J Bone Joint Surg Am. 2005;87(4):731–41.

    Article  PubMed  Google Scholar 

  48. Nozaka K et al. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone. 2008;42(1):90–7.

    Article  PubMed  CAS  Google Scholar 

  49. Rowshan HH et al. Effect of intermittent systemic administration of recombinant parathyroid hormone (1-34) on mandibular fracture healing in rats. J Oral Maxillofac Surg. 2010;68(2):260–7.

    Article  PubMed  Google Scholar 

  50. Aspenberg P et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14.

    Article  PubMed  CAS  Google Scholar 

  51. Peichl P et al. Parathyroid hormone 1-84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am. 2011;93(17):1583–7.

    Article  PubMed  Google Scholar 

  52. Zhang D et al. The role of recombinant PTH in human fracture healing: a systematic review. J Orthop Trauma. 2014;28(1):57–62. Literature review of 16 publications, the majority of which are case reports, which found no evidence of impaired fracture healing in the setting of denosumab treatment and even anecdotal evidence of enhanced fracture healing.

    Article  PubMed  Google Scholar 

  53. Jolette J et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34(7):929–40.

    Article  PubMed  CAS  Google Scholar 

  54. Vahle JL et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30(3):312–21.

    Article  PubMed  CAS  Google Scholar 

  55. Andrews EB et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: study design and findings from the first 7 years. J Bone Miner Res. 2012;27(12):2429–37.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Bang UC, Hyldstrup L, Jensen JE. The impact of recombinant parathyroid hormone on malignancies and mortality: 7 years of experience based on nationwide Danish registers. Osteoporos Int. 2014;25(2):639–44.

    Article  PubMed  CAS  Google Scholar 

  57. Arcos D, Izquierdo-Barba I, Vallet-Regi M. Promising trends of bioceramics in the biomaterials field. J Mater Sci Mater Med. 2009;20(2):447–55.

    Article  PubMed  CAS  Google Scholar 

  58. Saidak Z et al. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell. 2012;11(3):467–74.

    Article  PubMed  CAS  Google Scholar 

  59. Peng S et al. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Bone. 2011;49(6):1290–8.

    Article  PubMed  CAS  Google Scholar 

  60. Yang F et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells. 2011;29(6):981–91.

    Article  PubMed  CAS  Google Scholar 

  61. Peng S et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Phys Biochem. 2009;23:165–74.

    Article  CAS  Google Scholar 

  62. Marie PJ, Felsenberg D, Brandi ML. How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int. 2011;22(6):1659–67.

    Article  PubMed  CAS  Google Scholar 

  63. Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther. 2012;136(2):216–26.

    Article  PubMed  CAS  Google Scholar 

  64. Wang C et al. Osteogenesis and angiogenesis induced by porous beta-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials. 2013;34(1):64–77.

    Article  PubMed  CAS  Google Scholar 

  65. Xu S et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588–96.

    Article  PubMed  CAS  Google Scholar 

  66. Lin K et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013;34:10028–42. These experiments demonstrated that strontium substituted calcium silicate ceramic scaffolds dramatically enhanced bone regeneration and angiogenesis in critical sized bone defects in ovarectomized mice. This paper also gave good background information on the function of strontium and silicate ions on bone metabolism and angiogenesis, respectively.

    Article  PubMed  CAS  Google Scholar 

  67. Food and Drug Administration, in Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis. 1994: Rockville, USA: FDA.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

JT Watson has received a speaker honorarium from Medtronic and served on an advisory panel for Bioventus.

DA Nicolaou declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by JT Watson involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tracy Watson.

Additional information

This article is part of the Topical Collection on Orthopedic Management of Fractures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, J.T., Nicolaou, D.A. Orthobiologics in the Augmentation of Osteoporotic Fractures. Curr Osteoporos Rep 13, 22–29 (2015). https://doi.org/10.1007/s11914-014-0249-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0249-5

Keywords

Navigation