Skip to main content
Log in

The Evolving Classification of Diffuse Gliomas: World Health Organization Updates for 2021

  • Neuro-Oncology (P.Y. Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The upcoming 2021 World Health Organization (WHO) Classification of Tumours of the Central Nervous System will feature numerous changes in classification, diagnostic criteria, nomenclature, and grading of diffuse gliomas. This article reviews these changes and the clinical and molecular findings underlying them.

Recent Findings

Since the publication of the 2016 World Health Organization (WHO) Classification of Tumours of the Central Nervous System, research has led to new insights into how molecular changes impact both the classification and grading of CNS tumors. The continued integration of molecular and histopathological features has led to changes in diagnostic criteria and grading for various tumors. In the new 2021 WHO CNS tumor classification scheme, diffuse gliomas will be classified as either adult-type diffuse gliomas, pediatric-type diffuse high-grade gliomas, or pediatric-type diffuse low-grade gliomas.

Summary

The upcoming changes in the classification of adult-type and pediatric-type diffuse gliomas allow for more effective communication of both diagnostic and prognostic information, and—particularly in the case of pediatric-type diffuse gliomas—may suggest possible targeted strategies for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020;30(4):844–56. https://doi.org/10.1111/bpa.12832. This article details recommendations for the upcoming WHO 2021 Classification of CNS Neoplasms, including refined diagnostic classes and conversion to Arabic numerals for grading.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8. https://doi.org/10.1007/s00401-020-02127-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D et al. WHO Classification of Tumors of the Central Nervous System. World Health Organization Classification of Tumours. Lyon: International Agency for Research on Cancer; 2016.

  4. Aoki K, Nakamura H, Suzuki H, Matsuo K, Kataoka K, Shimamura T, et al. Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol. 2018;20(1):66–77. https://doi.org/10.1093/neuonc/nox132.

    Article  CAS  PubMed  Google Scholar 

  5. • Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, et al. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol. 2019;21(12):1519–28. https://doi.org/10.1093/neuonc/noz124. This article identifies CDKN2A deletion as a robust prognostic marker in IDH-mutant astrocytoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Reis GF, Pekmezci M, Hansen HM, Rice T, Marshall RE, Molinaro AM, et al. CDKN2A loss is associated with shortened overall survival in lower-grade (World Health Organization Grades II-III) astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52. https://doi.org/10.1097/NEN.0000000000000188. This article identifies CDKN2A deletion as a robust prognostic marker in IDH-mutant astrocytoma.

    Article  CAS  PubMed  Google Scholar 

  7. Banan R, Stichel D, Bleck A, Hong B, Lehmann U, Suwala A, et al. Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathol. 2020;140(4):569–81. https://doi.org/10.1007/s00401-020-02194-y.

    Article  CAS  PubMed  Google Scholar 

  8. •• Brat DJ, Aldape K, Colman H, Holland EC, Louis DN, Jenkins RB, et al. cIMPACT-NOW update 3: recommended diagnostic criteria for “Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV”. Acta Neuropathol. 2018;136(5):805–10. https://doi.org/10.1007/s00401-018-1913-0. This article establishes molecular inclusion criteria for the diagnosis of glioblastoma, IDH-wild type, WHO grade 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31. doi:https://doi.org/10.1038/nature10833.

  11. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3. https://doi.org/10.1038/ng.1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Louis DN, Giannini C, Capper D, Paulus W, Figarella-Branger D, Lopes MB, et al. cIMPACT-NOW update 2: diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma. IDH-mutant Acta neuropathologica. 2018;135(4):639–42. https://doi.org/10.1007/s00401-018-1826-y. This article refines criteria for the diagnosis of diffuse midline glioma, with acknowledgement of H3 K27M mutations in other tumor types.

    Article  PubMed  Google Scholar 

  13. Gessi M, Capper D, Sahm F, Huang K, von Deimling A, Tippelt S, et al. Evidence of H3 K27M mutations in posterior fossa ependymomas. Acta Neuropathol. 2016;132(4):635–7. https://doi.org/10.1007/s00401-016-1608-3.

    Article  PubMed  Google Scholar 

  14. Hochart A, Escande F, Rocourt N, Grill J, Koubi-Pick V, Beaujot J et al. Long survival in a child with a mutated K27M-H3.3 pilocytic astrocytoma. Annals of clinical and translational neurology. 2015;2(4):439–43. doi:https://doi.org/10.1002/acn3.184.

  15. Zhang J, Wu G, Miller CP, Tatevossian RG, Dalton JD, Tang B, et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet. 2013;45(6):602–12. https://doi.org/10.1038/ng.2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27. https://doi.org/10.1007/s00401-015-1478-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castel D, Kergrohen T, Tauziede-Espariat A, Mackay A, Ghermaoui S, Lechapt E, et al. Histone H3 wild-type DIPG/DMG overexpressing EZHIP extend the spectrum diffuse midline gliomas with PRC2 inhibition beyond H3–K27M mutation. Acta Neuropathol. 2020;139(6):1109–13. https://doi.org/10.1007/s00401-020-02142-w.

    Article  PubMed  Google Scholar 

  18. Venneti S, Garimella MT, Sullivan LM, Martinez D, Huse JT, Heguy A, et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol. 2013;23(5):558–64. https://doi.org/10.1111/bpa.12042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37. https://doi.org/10.1016/j.ccr.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  20. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V, et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol. 2016;131(1):137–46. https://doi.org/10.1007/s00401-015-1493-1.

    Article  CAS  PubMed  Google Scholar 

  21. Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, Alfazema N et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28(5):877–93 e9. doi:https://doi.org/10.1016/j.stem.2021.01.016.

  22. Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF et al. Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell. 2020;183(6):1617–33 e22. doi:https://doi.org/10.1016/j.cell.2020.11.012.

  23. •• Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520–37e5. doi:https://doi.org/10.1016/j.ccell.2017.08.017. This article represents a broad molecular annotation of pediatric high-grade glioma, detailing the spectrum of defining molecular alterations across prospective diagnostic entities.

  24. Guerrini-Rousseau L, Varlet P, Colas C, Andreiuolo F, Bourdeaut F, Dahan K et al. Constitutional mismatch repair deficiency-associated brain tumors: report from the European C4CMMRD consortium. Neurooncol Adv. 2019;1(1):vdz033. doi:https://doi.org/10.1093/noajnl/vdz033.

  25. Clarke M, Mackay A, Ismer B, Pickles JC, Tatevossian RG, Newman S, et al. Infant high-grade gliomas comprise multiple subgroups characterized by novel targetable gene fusions and favorable outcomes. Cancer Discov. 2020;10(7):942–63. https://doi.org/10.1158/2159-8290.CD-19-1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guerreiro Stucklin AS, Ryall S, Fukuoka K, Zapotocky M, Lassaletta A, Li C, et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun. 2019;10(1):4343. https://doi.org/10.1038/s41467-019-12187-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ellison DW, Hawkins C, Jones DTW, Onar-Thomas A, Pfister SM, Reifenberger G, et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1 alterations or BRAF(V600E) mutation. Acta Neuropathol. 2019;137(4):683–7. https://doi.org/10.1007/s00401-019-01987-0.

    Article  CAS  PubMed  Google Scholar 

  28. Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 2016;131(6):833–45. https://doi.org/10.1007/s00401-016-1539-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wefers AK, Stichel D, Schrimpf D, Coras R, Pages M, Tauziede-Espariat A, et al. Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathol. 2019. https://doi.org/10.1007/s00401-019-02078-w.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huse JT, Snuderl M, Jones DT, Brathwaite CD, Altman N, Lavi E, et al. Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol. 2017;133(3):417–29. https://doi.org/10.1007/s00401-016-1639-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Greg Fuller for providing histopathological images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Huse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, A., Huse, J.T. The Evolving Classification of Diffuse Gliomas: World Health Organization Updates for 2021. Curr Neurol Neurosci Rep 21, 67 (2021). https://doi.org/10.1007/s11910-021-01153-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01153-8

Keywords

Navigation