Skip to main content

Advertisement

Log in

Neuropathology of Explosive Blast Traumatic Brain Injury

  • Neurotrauma (J Levine, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

During the conflicts of the Global War on Terror, which are Operation Enduring Freedom (OEF) in Afghanistan and Operation Iraqi Freedom (OIF), there have been over a quarter of a million diagnosed cases of traumatic brain injury (TBI). The vast majority are due to explosive blast. Although explosive blast TBI (bTBI) shares many clinical features with closed head TBI (cTBI) and penetrating TBI (pTBI), it has unique features, such as early cerebral edema and prolonged cerebral vasospasm. Evolving work suggests that diffuse axonal injury (DAI) seen following explosive blast exposure is different than DAI from focal impact injury. These unique features support the notion that bTBI is a separate and distinct form of TBI. This review summarizes the current state of knowledge pertaining to bTBI. Areas of discussion are: the physics of explosive blast generation, blast wave interaction with the bony calvarium and brain tissue, gross tissue pathophysiology, regional brain injury, and cellular and molecular mechanisms of explosive blast neurotrauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Center. AFHS. DoD TBI statistics 2000-2001. In: Center. AFHS, editor. Washington, DC: Dept of Defense; 2012. p. 1–5.

  2. • Ling G, Bandak F, Armonda R, Grant G, Ecklund J. Explosive blast neurotrauma. J Neurotrauma. 2009;26(6):815–825. doi:10.1089/neu.2007.0484. Overview of explosive blast neurotrauma.

    Article  PubMed  Google Scholar 

  3. Ling GS, Ecklund JM. Traumatic brain injury in modern war. Curr Opin Anaesthesiol. 2011;24(2):124–30. doi:10.1097/ACO.0b013e32834458da.

    Article  PubMed  Google Scholar 

  4. •• Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59(3):2017–2024. doi:10.1016/j.neuroimage.2011.10.050. This is a study of bTBI in soldiers. The DTI analysis technique has been modified from the traditional volume averaging method. Investigators are able to identify bTBI using DTI, as well as identify increased levels of injury in soldiers with multiple bTBI.

    Article  PubMed  Google Scholar 

  5. Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, et al. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery. 2006;59(6):1215–25. doi:10.1227/01.neu.0000249190.46033.94. discussion 25.

    Article  PubMed  Google Scholar 

  6. Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T, et al. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg. 2005;103(5):812–24. doi:10.3171/jns.2005.103.5.0812.

    Article  PubMed  Google Scholar 

  7. •• Lew HL, Pogoda TK, Baker E, Stolzmann KL, Meterko M, Cifu DX et al. Prevalence of dual sensory impairment and its association with traumatic brain injury and blast exposure in OEF/OIF veterans. J Head Trauma Rehabil. 2011;26(6):489–496. doi:10.1097/HTR.0b013e318204e54b. This retrospective analysis of 36,919 veterans medical records was able to show that bTBI veterans with auditory injury are also likely to have ocular injury and vice versa. Investigators enhance the clinical knowledge of bTBI by indicating veterans with auditory injury disturbances should have a full and thorough sensory exam due to dual sensory injury in bTBI.

    Article  PubMed  Google Scholar 

  8. Cullis IG. Blast waves and how they interact with structures. J R Army Med Corps. 2001;147(1):16–26.

    PubMed  CAS  Google Scholar 

  9. •• Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N et al. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. J Neurotrauma. 2009;26(6):841–860. doi:10.1089/neu.2009-0898. This study is important because it provides an overview of explosive blasts as well as the effect of explosive blasts on the gyrencephalic porcine brain. Included are physiologic measurements are presented along with IHC of porcine brain slices.

    Article  PubMed  Google Scholar 

  10. Clemedson CJ, Jonsson A. Transmission and reflection of high explosive shock waves in bone. Acta Physiol Scand. 1961;51:47–61.

    Article  PubMed  CAS  Google Scholar 

  11. Celander H, Clemedson CJ, Ericsson UA, Hultman HI. A study on the relation between the duration of a shock wave and the severity of the blast injury produced by it. Acta Physiol Scand. 1955;33(1):14–8.

    Article  PubMed  CAS  Google Scholar 

  12. •• Desmoulin GT, Dionne JP. Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. J Trauma. 2009;67(5):1113–1122. doi:10.1097/TA.0b013e3181bb8e84. This manuscript unifies many aspects of blast. Of particular importance noted by the paper is cellular injury being related to stress-rate rather than total applied stress.

    Article  PubMed  Google Scholar 

  13. Doukas AG, McAuliffe DJ, Lee S, Venugopalan V, Flotte TJ. Physical factors involved in stress-wave-induced cell injury: the effect of stress gradient. Ultrasound Med Biol. 1995;21(7):961–7.

    Article  PubMed  CAS  Google Scholar 

  14. Saljo A, Arrhen F, Bolouri H, Mayorga M, Hamberger A. Neuropathology and pressure in the pig brain resulting from low-impulse noise exposure. J Neurotrauma. 2008;25(12):1397–406. doi:10.1089/neu.2008.0602.

    Article  PubMed  Google Scholar 

  15. Suneson A, Hansson HA, Seeman T. Peripheral high-energy missile hits cause pressure changes and damage to the nervous system: experimental studies on pigs. J Trauma. 1987;27(7):782–9.

    Article  PubMed  CAS  Google Scholar 

  16. Verschakelen JA, Van Fraeyenhoven L, Laureys G, Demedts M, Baert AL. Differences in CT density between dependent and nondependent portions of the lung: influence of lung volume. Am J Roentgenol. 1993;161(4):713–7.

    CAS  Google Scholar 

  17. Moss WC, King MJ, Blackman EG. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design. Phys Rev Lett. 2009;103(10):108702.

    Article  PubMed  Google Scholar 

  18. Leonardi AD, Bir CA, Ritzel DV, VandeVord PJ. Intracranial pressure increases during exposure to a shock wave. J Neurotrauma. 2011;28(1):85–94. doi:10.1089/neu.2010.1324.

    Article  PubMed  Google Scholar 

  19. Levin E, Muravchick S, Gold MI. Density of normal human cerebrospinal fluid and tetracaine solutions. Anesth Analg. 1981;60(11):814–7.

    PubMed  CAS  Google Scholar 

  20. Zou H, Schmiedeler JP, Hardy WN. Separating brain motion into rigid body displacement and deformation under low-severity impacts. J Biomech. 2007;40(6):1183–91. doi:10.1016/j.jbiomech.2006.06.018.

    Article  PubMed  Google Scholar 

  21. Hrapko M, van Dommelen JA, Peters GW, Wismans JS. The influence of test conditions on characterization of the mechanical properties of brain tissue. J Biomech Eng. 2008;130(3):031003. doi:10.1115/1.2907746.

    Article  PubMed  CAS  Google Scholar 

  22. Elkin BS, Ilankova A, Morrison B. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane. J Biomech Eng. 2011;133(7):071009. doi:10.1115/1.4004494.

    Article  PubMed  Google Scholar 

  23. Zhang J, Green MA, Sinkus R, Bilston LE. Viscoelastic properties of human cerebellum using magnetic resonance elastography. J Biomech. 2011;44(10):1909–13. doi:10.1016/j.jbiomech.2011.04.034.

    Article  PubMed  Google Scholar 

  24. Raymont V, Salazar AM, Krueger F, Grafman J. "Studying injured minds" - the Vietnam head injury study and 40years of brain injury research. Front Neurol. 2011;2:15. doi:10.3389/fneur.2011.00015.

    PubMed  Google Scholar 

  25. Salazar AM, Grafman JH, Vance SC, Weingartner H, Dillon JD, Ludlow C. Consciousness and amnesia after penetrating head injury: neurology and anatomy. Neurology. 1986;36(2):178–87.

    Article  PubMed  CAS  Google Scholar 

  26. Morley MG, Nguyen JK, Heier JS, Shingleton BJ, Pasternak JF, Bower KS. Blast eye injuries: a review for first responders. Disaster Med Public Health Prep. 2010;4(2):154–60.

    Article  PubMed  Google Scholar 

  27. Weichel ED, Colyer MH, Bautista C, Bower KS, French LM. Traumatic brain injury associated with combat ocular trauma. J Head Trauma Rehabil. 2009;24(1):41–50. doi:10.1097/HTR.0b013e3181956ffd.

    Article  PubMed  Google Scholar 

  28. Shelah M, Weinberger D, Ofri R. Acute blindness in a dog caused by an explosive blast. Vet Ophthalmol. 2007;10(3):196–8. doi:10.1111/j.1463-5224.2007.00533.x.

    Article  PubMed  Google Scholar 

  29. Gondusky JS, Reiter MP. Protecting military convoys in Iraq: an examination of battle injuries sustained by a mechanized battalion during Operation Iraqi Freedom II. Mil Med. 2005;170(6):546–9.

    PubMed  Google Scholar 

  30. Jankovic S, Zuljan I, Sapunar D, Buca A, Plestina-Borjan I. Clinical and radiological management of wartime eye and orbit injuries. Mil Med. 1998;163(6):423–6.

    PubMed  CAS  Google Scholar 

  31. Fausti SA, Wilmington DJ, Gallun FJ, Myers PJ, Henry JA. Auditory and vestibular dysfunction associated with blast-related traumatic brain injury. J Rehabil Res Dev. 2009;46(6):797–810.

    Article  PubMed  Google Scholar 

  32. Helfer TM, Jordan NN, Lee RB, Pietrusiak P, Cave K, Schairer K. Noise-induced hearing injury and comorbidities among postdeployment U.S. Army soldiers: April 2003–June 2009. Am J Audiol. 2011;20(1):33–41. doi:10.1044/1059-0889(2011/10-0033.

    Article  PubMed  Google Scholar 

  33. Cave KM, Cornish EM, Chandler DW. Blast injury of the ear: clinical update from the global war on terror. Mil Med. 2007;172(7):726–30.

    PubMed  Google Scholar 

  34. Lew HL, Jerger JF, Guillory SB, Henry JA. Auditory dysfunction in traumatic brain injury. J Rehabil Res Dev. 2007;44(7):921–8.

    Article  PubMed  Google Scholar 

  35. Mao JC, Pace E, Pierozynski P, Kou Z, Shen Y, VandeVord P, et al. Blast-induced tinnitus and hearing loss in rats: behavioral and imaging assays. J Neurotrauma. 2012;29(2):430–44. doi:10.1089/neu.2011.1934.

    Article  PubMed  Google Scholar 

  36. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci. 2010;30(45):14972–9. doi:10.1523/JNEUROSCI.4028-10.2010.

    Article  PubMed  CAS  Google Scholar 

  37. Berliner KI, Shelton C, Hitselberger WE, Luxford WM. Acoustic tumors: effect of surgical removal on tinnitus. Am J Otol. 1992;13(1):13–7.

    PubMed  CAS  Google Scholar 

  38. Kaltenbach JA, Zhang J, Finlayson P. Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res. 2005;206(1–2):200–26. doi:10.1016/j.heares.2005.02.013.

    Article  PubMed  Google Scholar 

  39. Lanting CP, de Kleine E, van Dijk P. Neural activity underlying tinnitus generation: results from PET and fMRI. Hear Res. 2009;255(1–2):1–13. doi:10.1016/j.heares.2009.06.009.

    Article  PubMed  CAS  Google Scholar 

  40. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology. 1998;50(1):114–20.

    Article  PubMed  CAS  Google Scholar 

  41. Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. NeuroImage. 2009;46(1):213–8. doi:10.1016/j.neuroimage.2009.01.069.

    Article  PubMed  Google Scholar 

  42. Scherer MR, Schubert MC. Traumatic brain injury and vestibular pathology as a comorbidity after blast exposure. Phys Ther. 2009;89(9):980–92. doi:10.2522/ptj.20080353.

    Article  PubMed  Google Scholar 

  43. Scherer M, Burrows H, Pinto R, Somrack E. Characterizing self-reported dizziness and otovestibular impairment among blast-injured traumatic amputees: a pilot study. Mil Med. 2007;172(7):731–7.

    PubMed  Google Scholar 

  44. Cohen JT, Ziv G, Bloom J, Zikk D, Rapoport Y, Himmelfarb MZ. Blast injury of the ear in a confined space explosion: auditory and vestibular evaluation. Isr Med Assoc J. 2002;4(7):559–62.

    PubMed  Google Scholar 

  45. Terrio H, Brenner LA, Ivins BJ, Cho JM, Helmick K, Schwab K, et al. Traumatic brain injury screening: preliminary findings in a US Army Brigade Combat Team. J Head Trauma Rehabil. 2009;24(1):14–23. doi:10.1097/HTR.0b013e31819581d8.

    Article  PubMed  Google Scholar 

  46. Scherer MR, Burrows H, Pinto R, Littlefield P, French LM, Tarbett AK, et al. Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury. Otol Neurotol. 2011;32(4):571–80. doi:10.1097/MAO.0b013e318210b8fa.

    Article  PubMed  Google Scholar 

  47. Sylvia FR, Drake AI, Wester DC. Transient vestibular balance dysfunction after primary blast injury. Mil Med. 2001;166(10):918–20.

    PubMed  CAS  Google Scholar 

  48. Chen JW, Ruff RL, Eavey R, Wasterlain CG. Posttraumatic epilepsy and treatment. J Rehabil Res Dev. 2009;46(6):685–96.

    Article  PubMed  Google Scholar 

  49. • Lowenstein DH. Epilepsy after head injury: an overview. Epilepsia. 2009;50 Suppl 2:4–9. doi:10.1111/j.1528-1167.2008.02004.x. Review of seizures and epilepsy in TBI including information on epilepsy following bTBI.

    Article  PubMed  Google Scholar 

  50. Lu J, Ng KC, Ling G, Wu J, Poon DJ, Kan EM, et al. Effect of blast exposure on the brain structure and cognition in Macaca fascicularis. J Neurotrauma. 2011. doi:10.1089/neu.2010.1591.

  51. Knudsen SK, Øen EO. Blast-induced neurotrauma in whales. Neurosci Res. 2003;46(3):377–86. doi:10.1016/s0168-0102(03)00101-9.

    Article  PubMed  Google Scholar 

  52. Saljo A, Mayorga M, Bolouri H, Svensson B, Hamberger A. Mechanisms and pathophysiology of the low-level blast brain injury in animal models. NeuroImage. 2011;54 Suppl 1:S83–8. doi:10.1016/j.neuroimage.2010.05.050.

    Article  PubMed  Google Scholar 

  53. de Lanerolle NC, Bandak F, Kang D, Li AY, Du F, Swauger P, et al. Characteristics of an explosive blast-induced brain injury in an experimental model. J Neuropathol Exp Neurol. 2011;70(11):1046–57. doi:10.1097/NEN.0b013e318235bef2.

    Article  PubMed  Google Scholar 

  54. Folmer RL, Billings CJ, Diedesch-Rouse AC, Gallun FJ, Lew HL. Electrophysiological assessments of cognition and sensory processing in TBI: applications for diagnosis, prognosis and rehabilitation. Int J Psychophysiol. 2011;82(1):4–15. doi:10.1016/j.ijpsycho.2011.03.005.

    Article  PubMed  Google Scholar 

  55. • Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med. 2011;364(22):2091–2100. doi:10.1056/NEJMoa1008069. This study indicates changes blast TBI may result in axonal injury identifiable by DTI. However, using traditional ROI DTI analysis, not all bTBI showed changes on DTI.

    Article  PubMed  CAS  Google Scholar 

  56. Zappalà G, de Schotten TM, Eslinger PJ. Traumatic brain injury and the frontal lobes: what can we gain with diffusion tensor imaging? Cortex. 2012;48(2):156–65.

    Article  PubMed  Google Scholar 

  57. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  58. Sponheim SR, McGuire KA, Kang SS, Davenport ND, Aviyente S, Bernat EM, et al. Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage. 2011;54(Supplement 1(0)):S21–9. doi:10.1016/j.neuroimage.2010.09.007.

    Article  PubMed  Google Scholar 

  59. Barenberg P, Strahlendorf H, Strahlendorf J. Hypoxia induces an excitotoxic-type of dark cell degeneration in cerebellar Purkinje neurons. Neurosci Res. 2001;40(3):245–54. doi:10.1016/s0168-0102(01)00234-6.

    Article  PubMed  CAS  Google Scholar 

  60. Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett. 1993;160(2):139–44.

    Article  PubMed  CAS  Google Scholar 

  61. Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol. 2012. doi:10.1016/j.expneurol.2012.01.013.

  62. Gyorgy A, Ling G, Wingo D, Walker J, Tong L, Parks S, et al. Time-dependent changes in serum biomarker levels after blast traumatic brain injury. J Neurotrauma. 2011;28(6):1121–6. doi:10.1089/neu.2010.1561.

    Article  PubMed  Google Scholar 

  63. Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, et al. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain. 2011;134(Pt 2):464–83. doi:10.1093/brain/awq360.

    Article  PubMed  Google Scholar 

  64. Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, et al. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. NeuroImage. 2011;54(Supplement 1(0)):S76–82. doi:10.1016/j.neuroimage.2010.04.008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The USUHS Neurotrauma laboratory gratefully acknowledges grant funding from the Defense Medical Research and Development Program # NA92HW.

Disclaimer

The opinions expressed herein are those of the authors. They do not and should not be interpreted as being those of or endorsed by the Uniformed Services University of the Health Sciences, the U.S. Army, the Dept. of Defense or the federal government.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey S. F. Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnuson, J., Leonessa, F. & Ling, G.S.F. Neuropathology of Explosive Blast Traumatic Brain Injury. Curr Neurol Neurosci Rep 12, 570–579 (2012). https://doi.org/10.1007/s11910-012-0303-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-012-0303-6

Keywords

Navigation