Skip to main content

Advertisement

Log in

A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Perivascular adipose tissue (PVAT) is now recognized as an important paracrine organ influencing the homeostasis of the vessel wall, regional blood flow and peripheral arterial resistance. There is remarkable phenotypic variability and plasticity of PVAT among various vascular beds, exhibiting phenotypes from white to brown and beige adipocytes. PVAT dysfunction is characterized by disturbed secretion of various adipokines, which, together with endothelial dysfunction, contribute to hypertension and cardiovascular disease (CVD). This brief review describes our current knowledge on PVAT in health and cardiovascular disease, with a special focus on different phenotypes and signaling pathways in adipocytes of PVAT associated with hypertension, obesity and cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of Obesity Among Adults and Youth: United States, 2011-2014. NCHS Data Brief. 2015(219):1–8.

  2. Gelber RP, Gaziano JM, Orav EJ, Manson JE, Buring JE, Kurth T. Measures of obesity and cardiovascular risk among men and women. J Am Coll Cardiol. 2008;52(8):605–15. doi:10.1016/j.jacc.2008.03.066.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. doi:10.1161/CIR.0000000000000350.

    Article  Google Scholar 

  4. Scherer PE. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes. 2006;55(6):1537–45. doi:10.2337/db06-0263.

    Article  CAS  PubMed  Google Scholar 

  5. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96(9):939–49. doi:10.1161/01.RES.0000163635.62927.34.

    Article  CAS  PubMed  Google Scholar 

  6. Lehman SJ, Massaro JM, Schlett CL, O'Donnell CJ, Hoffmann U, Fox CS. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis. 2010;210(2):656–61. doi:10.1016/j.atherosclerosis.2010.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dupont J, Pollet-Villard X, Reverchon M, Mellouk N, Levy R. Adipokines in human reproduction. Horm Mol Biol Clin Investig. 2015;24(1):11–24. doi:10.1515/hmbci-2015-0034.

    CAS  PubMed  Google Scholar 

  8. Abraham TM, Pedley A, Massaro JM, Hoffmann U, Fox CS. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation. 2015;132(17):1639–47. doi:10.1161/CIRCULATIONAHA.114.015000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu CY, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116(1):39–48. doi:10.1161/CIRCULATIONAHA.106.675355.

    Article  PubMed  Google Scholar 

  10. McLaughlin T, Lamendola C, Liu A, Abbasi F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96(11):E1756–60. doi:10.1210/jc.2011-0615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Katzmarzyk PT, Mire E, Bouchard C. Abdominal obesity and mortality: The Pennington Center Longitudinal Study. Nutr Diabetes. 2012;2, e42. doi:10.1038/nutd.2012.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9. doi:10.1161/CIRCRESAHA.108.182998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation. 2011;124(10):1160–71. doi:10.1161/CIRCULATIONAHA.111.027375.

    Article  PubMed  Google Scholar 

  14. Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, et al. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25. doi:10.1007/s00125-012-2481-9.

    Article  CAS  PubMed  Google Scholar 

  15. Ozen G, Daci A, Norel X, Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur J Pharmacol. 2015;766:16–24. doi:10.1016/j.ejphar.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  16. Kagota S, Iwata S, Maruyama K, Wakuda H, Shinozuka K. Functional relationship between arterial tissue and perivascular adipose tissue in metabolic syndrome. Yakugaku Zasshi. 2016;136(5):693–7. doi:10.1248/yakushi.15-00262-2.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura K, Fuster JJ, Walsh K. Adipokines: a link between obesity and cardiovascular disease. J Cardiol. 2014;63(4):250–9. doi:10.1016/j.jjcc.2013.11.006.

    Article  PubMed  Google Scholar 

  18. Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, et al. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: a segment analysis. Atherosclerosis. 2010;211(1):195–9. doi:10.1016/j.atherosclerosis.2010.02.013.

    Article  CAS  PubMed  Google Scholar 

  19. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97. doi:10.1038/nri2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohammed MM, Myers DS, Sofola OA, Hainsworth R, Drinkhill MJ. Vasodilator effects of leptin on canine isolated mesenteric arteries and veins. Clin Exp Pharmacol Physiol. 2007;34(8):771–4. doi:10.1111/j.1440-1681.2007.04648.x.

    Article  CAS  PubMed  Google Scholar 

  21. Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012;122(1):1–12. doi:10.1042/CS20110151.

    Article  CAS  Google Scholar 

  22. Wang P, Xu TY, Guan YF, Su DF, Fan GR, Miao CY. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370–80. doi:10.1093/cvr/cvn288.

    Article  CAS  PubMed  Google Scholar 

  23. Shields KJ, Stolz D, Watkins SC, Ahearn JM. Complement proteins C3 and C4 bind to collagen and elastin in the vascular wall: a potential role in vascular stiffness and atherosclerosis. Clin Trans Sci. 2011;4(3):146–52. doi:10.1111/j.1752-8062.2011.00304.x.

    Article  CAS  Google Scholar 

  24. Galvez B, de Castro J, Herold D, Dubrovska G, Arribas S, Gonzalez MC, et al. Perivascular adipose tissue and mesenteric vascular function in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol. 2006;26(6):1297–302. doi:10.1161/01.ATV.0000220381.40739.dd.

    Article  CAS  PubMed  Google Scholar 

  25. Knudson JD, Dincer UD, Zhang C, Swafford Jr AN, Koshida R, Picchi A, et al. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2005;289(1):H48–56. doi:10.1152/ajpheart.01159.2004.

    Article  CAS  PubMed  Google Scholar 

  26. Van de Voorde J, Boydens C, Pauwels B, Decaluwe K. Perivascular adipose tissue, inflammation and vascular dysfunction in obesity. Curr Vasc Pharmacol. 2014;12(3):403–11.

    Article  CAS  Google Scholar 

  27. Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.

    Article  CAS  PubMed  Google Scholar 

  28. Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M, et al. Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway. Arterioscler Thromb Vasc Biol. 2010;30(9):1711–7. doi:10.1161/ATVBAHA.110.210070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galvez-Prieto B, Dubrovska G, Cano MV, Delgado M, Aranguez I, Gonzalez MC, et al. A reduction in the amount and anti-contractile effect of periadventitial mesenteric adipose tissue precedes hypertension development in spontaneously hypertensive rats. Hypertens Res. 2008;31(7):1415–23. doi:10.1291/hypres.31.1415.

    Article  PubMed  Google Scholar 

  30. Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, et al. Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes. 2010;59(11):2949–59. doi:10.2337/db10-0582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang P, Wang Y, Fan Y, Tang Z, Wang N. Overexpression of adiponectin receptors potentiates the antiinflammatory action of subeffective dose of globular adiponectin in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(1):67–74. doi:10.1161/ATVBAHA.108.178061.

    Article  CAS  PubMed  Google Scholar 

  32. Hulsmans M, Van Dooren E, Mathieu C, Holvoet P. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS One. 2012;7(2), e32794. doi:10.1371/journal.pone.0032794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Withers SB, Bussey CE, Saxton SN, Melrose HM, Watkins AE, Heagerty AM. Mechanisms of adiponectin-associated perivascular function in vascular disease. Arterioscler Thromb Vasc Biol. 2014;34(8):1637–42. doi:10.1161/ATVBAHA.114.303031.

    Article  CAS  PubMed  Google Scholar 

  34. Peri-Okonny PA, Ayers C, Maalouf N, Das SR, de Lemos JA, Berry JD, et al. Adiponectin protects against incident hypertension independent of body fat distribution: observations from the Dallas Heart Study. Diabetes Metab Res Rev. 2016. doi:10.1002/dmrr.2840.

    PubMed  Google Scholar 

  35. Xu A, Vanhoutte PM. Adiponectin and adipocyte fatty acid binding protein in the pathogenesis of cardiovascular disease. Am J Physiol Heart Circ Physiol. 2012;302(6):H1231–40. doi:10.1152/ajpheart.00765.2011.

    Article  CAS  PubMed  Google Scholar 

  36. Sarvottam K, Magan D, Yadav RK, Mehta N, Mahapatra SC. Adiponectin, interleukin-6, and cardiovascular disease risk factors are modified by a short-term yoga-based lifestyle intervention in overweight and obese men. J Altern Complement Med. 2013;19(5):397–402. doi:10.1089/acm.2012.0086.

    Article  PubMed  Google Scholar 

  37. Goldstein BJ, Scalia RG, Ma XL. Protective vascular and myocardial effects of adiponectin. Nat Clin Pract Cardiovasc Med. 2009;6(1):27–35. doi:10.1038/ncpcardio1398.

    Article  CAS  PubMed  Google Scholar 

  38. Morita Y, Maeda K, Kondo T, Ishii H, Matsudaira K, Okumura N, et al. Impact of adiponectin and leptin on long-term adverse events in Japanese patients with acute myocardial infarction. Results from the Nagoya Acute Myocardial Infarction Study (NAMIS). Circ J. 2013;77(11):2778–85.

    Article  CAS  PubMed  Google Scholar 

  39. Wu ZJ, Cheng YJ, Gu WJ, Aung LH. Adiponectin is associated with increased mortality in patients with already established cardiovascular disease: a systematic review and meta-analysis. Metabolism. 2014;63(9):1157–66. doi:10.1016/j.metabol.2014.05.001.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.

    Article  PubMed  Google Scholar 

  41. Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127(22):2209–21. doi:10.1161/CIRCULATIONAHA.112.001133.

    Article  CAS  PubMed  Google Scholar 

  42. Yu L, Tu Q, Han Q, Zhang L, Sui L, Zheng L, et al. Adiponectin regulates bone marrow mesenchymal stem cell niche through a unique signal transduction pathway: an approach for treating bone disease in diabetes. Stem Cells. 2015;33(1):240–52. doi:10.1002/stem.1844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rocha VZ, Folco EJ, Ozdemir C, Sheikine Y, Christen T, Sukhova GK, et al. CXCR3 controls T-cell accumulation in fat inflammation. Arterioscler Thromb Vasc Biol. 2014;34(7):1374–81. doi:10.1161/ATVBAHA.113.303133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Stijn CM, Kim J, Barish GD, Tietge UJ, Tangirala RK. Adiponectin expression protects against angiotensin II-mediated inflammation and accelerated atherosclerosis. PLoS One. 2014;9(1), e86404. doi:10.1371/journal.pone.0086404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo J, Bian Y, Bai R, Li H, Fu M, Xiao C. Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca(2)(+)-ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovasc Pharmacol. 2013;62(2):143–53. doi:10.1097/FJC.0b013e31829521af.

    Article  CAS  PubMed  Google Scholar 

  46. Cao T, Gao Z, Gu L, Chen M, Yang B, Cao K, et al. AdipoR1/APPL1 potentiates the protective effects of globular adiponectin on angiotensin II-induced cardiac hypertrophy and fibrosis in neonatal rat atrial myocytes and fibroblasts. PLoS One. 2014;9(8), e103793. doi:10.1371/journal.pone.0103793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70. doi:10.1038/27376.

    Article  CAS  PubMed  Google Scholar 

  48. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.

    Article  CAS  PubMed  Google Scholar 

  49. Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51. doi:10.1016/j.tem.2010.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huby AC, Otvos Jr L. Belin de Chantemele EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67(5):1020–8. doi:10.1161/HYPERTENSIONAHA.115.06642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beltowski J. Leptin and atherosclerosis. Atherosclerosis. 2006;189(1):47–60. doi:10.1016/j.atherosclerosis.2006.03.003.

    Article  CAS  PubMed  Google Scholar 

  52. Martin SS, Qasim AN, Rader DJ, Reilly MP. C-reactive protein modifies the association of plasma leptin with coronary calcium in asymptomatic overweight individuals. Obesity (Silver Spring). 2012;20(4):856–61. doi:10.1038/oby.2011.164.

    Article  CAS  Google Scholar 

  53. Bickel C, Schnabel RB, Zeller T, Lackner KJ, Rupprecht HJ, Blankenberg S et al. Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the AtheroGene study. Biomarkers. 2016:1–9. doi:10.3109/1354750X.2015.1130745.

  54. Amrock SM, Weitzman M. Effect of increased leptin and C-reactive protein levels on mortality: results from the National Health and Nutrition Examination Survey. Atherosclerosis. 2014;236(1):1–6. doi:10.1016/j.atherosclerosis.2014.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petrini S, Neri T, Lombardi S, Cordazzo C, Balia C, Scalise V, et al. Leptin induces the generation of procoagulant, tissue factor bearing microparticles by human peripheral blood mononuclear cells. Biochim Biophys Acta. 2016;1860(6):1354–61. doi:10.1016/j.bbagen.2016.03.029.

    Article  CAS  PubMed  Google Scholar 

  56. Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood-brain barrier and high affinity transport systems for entry into hypothalamus and across the blood-cerebrospinal fluid barrier. Endocrinology. 2000;141(4):1434–41. doi:10.1210/endo.141.4.7435.

    CAS  PubMed  Google Scholar 

  57. Benkhoff S, Loot AE, Pierson I, Sturza A, Kohlstedt K, Fleming I, et al. Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol. 2012;32(7):1605–12. doi:10.1161/ATVBAHA.112.251140.

    Article  CAS  PubMed  Google Scholar 

  58. Matsumoto T, Noguchi E, Ishida K, Nakayama N, Kobayashi T, Kamata K. Cilostazol improves endothelial dysfunction by increasing endothelium-derived hyperpolarizing factor response in mesenteric arteries from Type 2 diabetic rats. Eur J Pharmacol. 2008;599(1-3):102–9. doi:10.1016/j.ejphar.2008.10.006.

    Article  CAS  PubMed  Google Scholar 

  59. Beltowski J, Wojcicka G, Jamroz-Wisniewska A. Role of nitric oxide and endothelium-derived hyperpolarizing factor (EDHF) in the regulation of blood pressure by leptin in lean and obese rats. Life Sci. 2006;79(1):63–71. doi:10.1016/j.lfs.2005.12.041.

    Article  CAS  PubMed  Google Scholar 

  60. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, Wang H, Luo W, Guo C, Wang J, Chen YE, et al. Leptin-induced endothelial dysfunction is mediated by sympathetic nervous system activity. J Am Heart Assoc. 2013;2(5), e000299. doi:10.1161/JAHA.113.000299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dubrovska G, Verlohren S, Luft FC, Gollasch M. Mechanisms of ADRF release from rat aortic adventitial adipose tissue. Am J Physiol Heart Circ Physiol. 2004;286(3):H1107–13. doi:10.1152/ajpheart.00656.2003.

    Article  CAS  PubMed  Google Scholar 

  63. Gollasch M. Vasodilator signals from perivascular adipose tissue. Br J Pharmacol. 2012;165(3):633–42. doi:10.1111/j.1476-5381.2011.01430.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Greenstein AS, Khavandi K, Withers SB, Sonoyama K, Clancy O, Jeziorska M, et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation. 2009;119(12):1661–70. doi:10.1161/CIRCULATIONAHA.108.821181.

    Article  CAS  PubMed  Google Scholar 

  65. DeBoer MD. Obesity, systemic inflammation, and increased risk for cardiovascular disease and diabetes among adolescents: a need for screening tools to target interventions. Nutrition. 2013;29(2):379–86. doi:10.1016/j.nut.2012.07.003.

    Article  PubMed  Google Scholar 

  66. Noonan DM, De Lerma BA, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev. 2008;27(1):31–40. doi:10.1007/s10555-007-9108-5.

    Article  PubMed  Google Scholar 

  67. Nguyen Dinh Cat A, Briones AM, Callera GE, Yogi A, He Y, Montezano AC, et al. Adipocyte-derived factors regulate vascular smooth muscle cells through mineralocorticoid and glucocorticoid receptors. Hypertension. 2011;58(3):479–88. doi:10.1161/HYPERTENSIONAHA.110.168872.

    Article  CAS  PubMed  Google Scholar 

  68. Galvez-Prieto B, Bolbrinker J, Stucchi P, de Las Heras AI, Merino B, Arribas S, et al. Comparative expression analysis of the renin-angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol. 2008;197(1):55–64. doi:10.1677/JOE-07-0284.

    Article  CAS  PubMed  Google Scholar 

  69. Lee RM, Lu C, Su LY, Gao YJ. Endothelium-dependent relaxation factor released by perivascular adipose tissue. J Hypertens. 2009;27(4):782–90. doi:10.1097/HJH.0b013e328324ed86.

    Article  CAS  PubMed  Google Scholar 

  70. Gao YJ, Takemori K, Su LY, An WS, Lu C, Sharma AM, et al. Perivascular adipose tissue promotes vasoconstriction: the role of superoxide anion. Cardiovasc Res. 2006;71(2):363–73. doi:10.1016/j.cardiores.2006.03.013.

    Article  CAS  PubMed  Google Scholar 

  71. Tano JY, Schleifenbaum J, Gollasch M. Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterioscler Thromb Vasc Biol. 2014;34(9):1827–30. doi:10.1161/ATVBAHA.114.303032.

    Article  CAS  PubMed  Google Scholar 

  72. Zavaritskaya O, Zhuravleva N, Schleifenbaum J, Gloe T, Devermann L, Kluge R, et al. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension. 2013;61(1):151–9. doi:10.1161/HYPERTENSIONAHA.112.197566.

    Article  CAS  PubMed  Google Scholar 

  73. Gollasch M, Dubrovska G. Paracrine role for periadventitial adipose tissue in the regulation of arterial tone. Trends Pharmacol Sci. 2004;25(12):647–53. doi:10.1016/j.tips.2004.10.005.

    Article  CAS  PubMed  Google Scholar 

  74. Hausman DB, DiGirolamo M, Bartness TJ, Hausman GJ, Martin RJ. The biology of white adipocyte proliferation. Obes Rev. 2001;2(4):239–54.

    Article  CAS  PubMed  Google Scholar 

  75. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52. doi:10.1152/ajpendo.00691.2006.

    Article  CAS  PubMed  Google Scholar 

  76. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37. doi:10.1152/ajpheart.00376.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, et al. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics. 2013;45(16):697–709. doi:10.1152/physiolgenomics.00042.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. doi:10.1016/j.cell.2012.05.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Richard D, Monge-Roffarello B, Chechi K, Labbe SM, Turcotte EE. Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Front Endocrinol (Lausanne). 2012;3:36. doi:10.3389/fendo.2012.00036.

    Google Scholar 

  80. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94(9):3611–5. doi:10.1210/jc.2009-0571.

    Article  CAS  PubMed  Google Scholar 

  81. Bartelt A, Heeren J. The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol. 2012;23(3):190–5. doi:10.1097/MOL.0b013e328352dcef.

    Article  CAS  PubMed  Google Scholar 

  82. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. doi:10.1056/NEJMoa0810780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126(9):1067–78. doi:10.1161/CIRCULATIONAHA.112.104489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab. 2010;298(6):E1244–53. doi:10.1152/ajpendo.00600.2009.

    Article  CAS  PubMed  Google Scholar 

  85. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–64. doi:10.1074/jbc.M109.053942.

    Article  CAS  PubMed  Google Scholar 

  86. Tran KV, Gealekman O, Frontini A, Zingaretti MC, Morroni M, Giordano A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15(2):222–9. doi:10.1016/j.cmet.2012.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–9. doi:10.1016/j.cmet.2013.12.017.

    Article  CAS  PubMed  Google Scholar 

  88. Hu R, He ML, Hu H, Yuan BX, Zang WJ, Lau CP, et al. Characterization of calcium signaling pathways in human preadipocytes. J Cell Physiol. 2009;220(3):765–70. doi:10.1002/jcp.21823.

    Article  CAS  PubMed  Google Scholar 

  89. Kassmann M, Harteneck C, Zhu Z, Nurnberg B, Tepel M, Gollasch M. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney. Acta Physiol (Oxf). 2013;207(3):546–64. doi:10.1111/apha.12051.

    Article  CAS  Google Scholar 

  90. Palazzo E, Rossi F, de Novellis V, Maione S. Endogenous modulators of TRP channels. Curr Top Med Chem. 2013;13(3):398–407.

    Article  CAS  PubMed  Google Scholar 

  91. Shapovalov G, Lehen'kyi V, Skryma R, Prevarskaya N. TRP channels in cell survival and cell death in normal and transformed cells. Cell Calcium. 2011;50(3):295–302. doi:10.1016/j.ceca.2011.05.006.

    Article  CAS  PubMed  Google Scholar 

  92. Chen J, Li L, Li Y, Liang X, Sun Q, Yu H, et al. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx. Cardiovasc Diabetol. 2015;14:22. doi:10.1186/s12933-015-0183-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. doi:10.1111/bph.13514.

    Article  CAS  PubMed  Google Scholar 

  94. Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, et al. Capsaicin induces "brite" phenotype in differentiating 3T3-L1 preadipocytes. PLoS One. 2014;9(7), e103093. doi:10.1371/journal.pone.0103093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2008;294(6):H2489–96. doi:10.1152/ajpheart.01191.2007.

    Article  CAS  PubMed  Google Scholar 

  96. Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, et al. Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1. Mol Pharmacol. 2008;73(5):1405–12. doi:10.1124/mol.107.043323.

    Article  CAS  PubMed  Google Scholar 

  97. Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci. 2011;31(13):5067–77. doi:10.1523/JNEUROSCI.6451-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schleifenbaum J, Kassmann M, Szijarto IA, Hercule HC, Tano JY, Weinert S, et al. Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res. 2014;115(2):263–72. doi:10.1161/CIRCRESAHA.115.302882.

    Article  CAS  PubMed  Google Scholar 

  99. Che H, Yue J, Tse HF, Li GR. Functional TRPV and TRPM channels in human preadipocytes. Pflugers Arch. 2014;466(5):947–59. doi:10.1007/s00424-013-1355-4.

    Article  CAS  PubMed  Google Scholar 

  100. Sun W, Uchida K, Takahashi N, Iwata Y, Wakabayashi S, Goto T, et al. Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflugers Arch. 2016;468(9):1527–40. doi:10.1007/s00424-016-1846-1.

    Article  CAS  PubMed  Google Scholar 

  101. Lynch FM, Withers SB, Yao Z, Werner ME, Edwards G, Weston AH, et al. Perivascular adipose tissue-derived adiponectin activates BK(Ca) channels to induce anticontractile responses. Am J Physiol Heart Circ Physiol. 2013;304(6):H786–95. doi:10.1152/ajpheart.00697.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weston AH, Egner I, Dong Y, Porter EL, Heagerty AM, Edwards G. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin. Br J Pharmacol. 2013;169(7):1500–9. doi:10.1111/bph.12157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Fesus G, Dubrovska G, Gorzelniak K, Kluge R, Huang Y, Luft FC, et al. Adiponectin is a novel humoral vasodilator. Cardiovasc Res. 2007;75(4):719–27. doi:10.1016/j.cardiores.2007.05.025.

    Article  CAS  PubMed  Google Scholar 

  104. Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.

    Article  CAS  PubMed  Google Scholar 

  105. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2(1):21–33. doi:10.1016/j.cmet.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  106. Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)-sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol. 2001;281(6):C1769–75.

    CAS  PubMed  Google Scholar 

  107. Lohn M, Dubrovska G, Lauterbach B, Luft FC, Gollasch M, Sharma AM. Periadventitial fat releases a vascular relaxing factor. FASEB J. 2002;16(9):1057–63. doi:10.1096/fj.02-0024com.

    Article  PubMed  Google Scholar 

  108. Schleifenbaum J, Kohn C, Voblova N, Dubrovska G, Zavarirskaya O, Gloe T, et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens. 2010;28(9):1875–82. doi:10.1097/HJH.0b013e32833c20d5.

    Article  CAS  PubMed  Google Scholar 

  109. Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The role of DPO-1 and XE991-sensitive potassium channels in perivascular adipose tissue-mediated regulation of vascular tone. Front Physiol. 2016;7:335. doi:10.3389/fphys.2016.00335.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol. 2004;287(5):H2316–23. doi:10.1152/ajpheart.00331.2004.

    Article  CAS  PubMed  Google Scholar 

  111. Tang G, Wu L, Wang R. Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol. 2010;37(7):753–63. doi:10.1111/j.1440-1681.2010.05351.x.

    Article  CAS  PubMed  Google Scholar 

  112. Kohn C, Schleifenbaum J, Szijarto IA, Marko L, Dubrovska G, Huang Y, et al. Differential effects of cystathionine-gamma-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One. 2012;7(8), e41951. doi:10.1371/journal.pone.0041951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Verlohren S, Dubrovska G, Tsang SY, Essin K, Luft FC, Huang Y, et al. Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries. Hypertension. 2004;44(3):271–6. doi:10.1161/01.HYP.0000140058.28994.ec.

    Article  CAS  PubMed  Google Scholar 

  114. Gollasch M. KCNQ channels and novel insights into coronary perfusion. Hypertension. 2013;62(6):1011–2. doi:10.1161/HYPERTENSIONAHA.113.01869.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG) (MG), Deutsche Akademische Austauschdienst (DAAD) (MG) and Shanghai Tongji Hospital (XL) are supporting our studies. We thank Mario Kassmann and Dmitry Tsvetkov for critical reading and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Gollasch.

Ethics declarations

Conflict of Interest

Drs. Lian and Gollasch declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, X., Gollasch, M. A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk. Curr Hypertens Rep 18, 82 (2016). https://doi.org/10.1007/s11906-016-0692-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-016-0692-z

Keywords

Navigation