Skip to main content
Log in

Noninvasive Studies of Central Aortic Pressure

  • Pathogenesis of Hypertension (DT O’Connor, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Our purpose is to review noninvasive methods for measuring central arterial pressure. Indices of central arterial pressure measured from central aortic and peripheral arterial waveforms have shown value in predicting cardiovascular events and death, as well as in guiding therapeutic management. This article reviews noninvasive techniques of measuring central arterial pressure that have been validated against intra-arterial pressure. This paper explains methods to derive central (aortic and carotid) pressure from radial and brachial sites. It focuses on specific issues of brachial calibration applied to carotid pressure waveforms, which were regarded as a surrogate of aortic pressures used in three major studies (Framingham, Asklepios, and Australian National Blood Pressure 2 studies). We explain why radial-based methods are superior to carotid-based methods for estimating central pressure. Physiological principles of pressure measurement need be satisfied to ensure accurate recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Nichols WW, O’Rourke MF, Vlachopoulos C. McDonald’s blood flow in arteries. 6th ed. London; Hodder Arnold 2011. This standard textbook, now in its 6th edition, extends new approaches of McDonald, Womersley, Taylor of 50 years ago to clinical application.

    Google Scholar 

  2. O’Rourke MF, Adji A. Clinical use of applanation tonometry: hope remains in Pandora’s box. J Hypertens. 2010;28:229–33.

    Article  PubMed  CAS  Google Scholar 

  3. Avolio AP, Chen S, Wang R, et al. Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation. 1983;68:50–8.

    Article  PubMed  CAS  Google Scholar 

  4. Laurent S, Cockcroft J, van Bortel L, et al. European network for non-invasive investigation of large arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.

    Article  PubMed  Google Scholar 

  5. •• Vlachopoulos C, Aznaouridis K, O’Rourke MF, et al. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J. 2010;31:1865–71. This is the first meta-analysis to indicate the value of pulse wave contour methods in predicting outcome events.

    Article  PubMed  Google Scholar 

  6. •• Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55:1318–27. This meta-analysis confirms the value of aortic stiffness in predicting outcome.

    Article  PubMed  Google Scholar 

  7. • Mitchell GF, Hwang SJ, Vasan RS, et al. Arterial stiffness and cardiovascular events; the Framingham Heart Study. Circulation 2010;121:505–11. This Framingham paper (perhaps the most controversial) confirmed the value of aortic PWV for predicting outcome but failed to show any value for central pressure or wave contour. There was no difference between central and brachial systolic or pulse pressure. This paper has been criticized on method, for the assumption that the brachial artery can be applanated. Reanalysis is recommended.

    Article  PubMed  Google Scholar 

  8. Hashimoto J, Imai Y, O’Rourke MF. Monitoring of antihypertensive therapy for reduction in left ventricular mass. Am J Hypertens. 2007;20:1229–33.

    Article  PubMed  CAS  Google Scholar 

  9. Postel-Vinay N. A century of arterial hypertension: 1896–1996. Chichester: Wiley; 1996.

    Google Scholar 

  10. O’Rourke MF, Safar ME, Dzau V. Arterial vasodilatation: Mechanisms and therapy. London: Edward Arnold; 1993.

    Google Scholar 

  11. O’Rourke MF, Lei J, Gallagher DE, Avolio AP. Determination of the ascending aortic pressure wave augmentation from the radial artery pressure pulse contour in humans. Circulation. 1995;92:I–745.

    Google Scholar 

  12. Takazawa K, Tanaka N, Takeda K, et al. Underestimation of effect of vasodilator effects of nitroglycerin by upper limb blood pressure. Hypertension. 1995;26:520–3.

    PubMed  CAS  Google Scholar 

  13. Williams B, Lacy PS, Yan P, et al. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an N-point moving average method. J Am Coll Cardiol. 2011;57:951–61.

    Article  PubMed  Google Scholar 

  14. Dart AM, Cameron JD, Gatzka CM, et al. Similar effects of treatment on central and brachial blood pressures in older hypertensive subjects in the Second Australian National Blood Pressure Trial. Hypertension. 2007;49:1242–7.

    Article  PubMed  CAS  Google Scholar 

  15. Segers P, Mahieu D, Kips J, et al. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension. 2009;42:414–20.

    Article  CAS  Google Scholar 

  16. O’Rourke MF, Takazawa K. Measurement of central aortic pressure: an acceptable compromise: J Hypertens 2011;29:2038–9

    Google Scholar 

  17. O’Rourke MF, Adji A. Central pressure and pulse wave amplification in the upper limb. Hypertension. 2010;55:e1–2.

    Article  PubMed  CAS  Google Scholar 

  18. Marey EJ. Physiologie medicale de la circulation du sang. Paris: Adrien Delahaye; 1863.

    Google Scholar 

  19. Mahomed FA. The physiology and clinical use of the sphygmograph. Medical Time Gazette. 1872;1:62.

    Google Scholar 

  20. Franklin SS, Gustin IV W, Wong NE, et al. Hemodynamic pattern of age-related changes in blood pressure. Circulation. 1997;96:308–15.

    PubMed  CAS  Google Scholar 

  21. Kelly RP, Gibbs HH, O’Rourke MF, et al. Nitroglycerin has more favourable effects on left ventricular afterload than apparent from measurement of pressure in a peripheral artery. Eur Heart J. 1990;11:138–44.

    PubMed  CAS  Google Scholar 

  22. Kelly R, Karamanoglu M, Gibbs H, et al. Non-invasive carotid pressure wave registration as an indicator of ascending aortic pressure. J Vasc Med Biol. 1989;1:241–7.

    Google Scholar 

  23. Takazawa K. A clinical study of the second component of left ventricular systolic pressure. J Tokyo Med Coll. 1987;45:256–70.

    Google Scholar 

  24. Chen CH, Ting CT, Nussbacher A, et al. Validation of carotid artery tonometry as a means of estimating augmentation index of ascending aortic pressure. Hypertension. 1996;27:168–75.

    PubMed  CAS  Google Scholar 

  25. Kelly R, Hayward C, Ganis J, et al. Non-invasive registration of the arterial pressure pulse waveform using high fidelity applanation tonometry. J Vasc Med Biol. 1989;1:142–9.

    Google Scholar 

  26. Kelly RP. Systemic arterial function in healthy and disease: clinical determinants and measurement. MD Thesis. University of New South Wales, Sydney, Australia 1989.

  27. Adji A, O’Rourke MF. Brachial artery tonometry and the Popeye phenomenon: explanation of anomalies in generating central from upper limb pressure waveforms. (submitted)

  28. O’Rourke MF, Adji A, Hoegler S. Calibration of non-invasively recorded upper limb pressure waves. Hypertension. 2005;46:e15–16.

    Article  PubMed  Google Scholar 

  29. Kroeker EJ, Wood EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res. 1955;3:623–32.

    PubMed  CAS  Google Scholar 

  30. Rowell LB, Brengelmann GL, Blackman JR, et al. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation. 1968;37:954–64.

    PubMed  CAS  Google Scholar 

  31. O’Rourke MF, Takazawa K. Flawed measurement of brachial tonometry for calculating aortic pressure? Hypertension. 2009;54:e131.

    Article  PubMed  CAS  Google Scholar 

  32. Chen CH, Nevo E, Fetics B, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation. 1997;95:1827–36.

    PubMed  CAS  Google Scholar 

  33. Pauca A, O’Rourke M, Kon N. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension. 2001;38:932–7.

    Article  PubMed  CAS  Google Scholar 

  34. Smulyan H, Siddiqui DS, Carolson RJ, et al. Clinical utility of aortic pulses and pressures calculated form applanated radial-artery pulses. Hypertension. 2003;42:150–5.

    Article  PubMed  CAS  Google Scholar 

  35. Cohn JD, Finkelstein S, McVeigh G, et al. Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension. 1995;26:503–8.

    PubMed  CAS  Google Scholar 

  36. Breit SN, O’Rourke MF. Comparison of direct and indirect arterial pressure measurements in hospitalised patients. Aust NZ J Med. 1974;4:485–91.

    Article  CAS  Google Scholar 

  37. Lane D, Beevers M, Barnes N, et al. Inter-arm differences in blood pressure: when are they clinically significant? J Hypertens. 2002;20:1089–95.

    Article  PubMed  CAS  Google Scholar 

  38. • Shih YT, Cheng HM, Sung SH, et al. Quantification of the calibration in the transfer function-derived central aortic blood pressure. Am J Hypertens 2011 Aug 18. doi: 10.1038/ajh.2011.146 (Epub ahead of print). This paper establishes cuff inaccuracy as the least accurate part of the transfer function process.

    Google Scholar 

  39. • Kips JG, Schutte AE, Vermeersch SJ, et al. Comparison of central pressure estimates obtained from SphygmoCor, Omron HEM-9000AI and carotid applanation tonometry. J Hypertens. 2011;29:1115–20. A surprising paper by respected authorities, it purports to show superiority of a brachial/carotid method for measuring central pressure but overlooks their data that showed identity between central carotid and brachial pressures.

    Article  PubMed  CAS  Google Scholar 

  40. • Boutouyrie P, Alivon M, Herbert A. Precision, accuracy and added value of central pressure measurement. J Hypertens. 2011;29:1059–60. This editorial on the above paper castigates manufacturers but again overlooks the identity of central and brachial pressures.

    Article  PubMed  CAS  Google Scholar 

  41. Cameron JD. Assessment of central blood pressure waveforms—let the buyer beware: different approaches result in different result. Hypertens Res. 2011;34:994–5.

    Google Scholar 

  42. Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood pressure measurement in humans. Part 1: blood pressure measurement in humans. A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research Hypertension 2005;45:142–161.

  43. Hope SA, Meredith IT, Tay D, et al. “Generalizability” of a radial-aortic transfer function for the derivation of central aortic waveform parameters. J Hypertens. 2007;25:1812–20.

    Article  PubMed  CAS  Google Scholar 

  44. Segers P, Mahieu D, Kips J, et al. The use of generalized transfer function: different processing, different results! J Hypertens. 2007;25:1783–7.

    Article  PubMed  CAS  Google Scholar 

  45. Westerhof BE, Guelen I, Stok WJ, et al. Individualization of transfer function in estimation of central aortic pressure from the peripheral pulse is not required in patients at rest. J Appl Physiol. 2008;105:1858–63.

    Article  PubMed  Google Scholar 

  46. Sharman JE, Lim R, Qasem AM, et al. Validation of a generalized transfer function to noninvasively derived central blood pressure during exercise. Hypertension. 2006;47:1203–8.

    Article  PubMed  CAS  Google Scholar 

  47. Payne RA, Teh CH, Webb DJ, Maxwell SRJ. A generalized arterial transfer function derived at rest underestimates augmentation of central pressure after exercise. J Hypertens. 2007;25:2266–72.

    Article  PubMed  CAS  Google Scholar 

  48. •• Guilcher A, Brett S, Munir S, et al. Estimating central SBP from the peripheral pulse: influence of waveform analysis and calibration error. J Hypertens 2011;29:1357–66. This is the first detailed study of differences in aortic and radial artery systolic and pulse pressure but similarity of mean and diastolic pressure during and after cardiac surgery.

    Article  PubMed  CAS  Google Scholar 

  49. Pauca AL, Wallenhaupt SL, Kon ND, et al. Does radial artery pressure accurately reflect aortic pressure? Chest. 1992;102:1193–8.

    Article  PubMed  CAS  Google Scholar 

  50. Kelly R, Fitchett D. Noninvasive determination of aortic input impedance and external left ventricular power output: a validation and repeatability study of a new technique. J Am Coll Cardiol. 1992;20:952–63.

    Article  PubMed  CAS  Google Scholar 

  51. O’Rourke MF, Adji A. Basis for use of central blood pressure measurement in office clinical practice. J Am Soc Hypertens. 2008;2:28–38.

    Article  PubMed  Google Scholar 

  52. Kelly RP, O’Rourke MF. Evaluation of arterial waveforms in hypertension and normotension. In: Laragh JH, Brenner BM, editors. Hypertension: pathology, diagnosis and management. 2nd ed. New York: Raven; 1995. p. 343–64.

    Google Scholar 

  53. Takazawa K, Kobayashi H, Shindo N, et al. Relationship between radial and central arterial pulse wave and evaluation of central aortic pressure using the radial arterial pulse wave. Hypertens Res. 2007;30:219–28.

    Article  PubMed  Google Scholar 

  54. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech. 1983;16:141–52.

    Article  PubMed  CAS  Google Scholar 

  55. Segers P, Rietzschel ER, De Buyzere ML, et al. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women. Hypertension. 2007;49:1248–55.

    Article  PubMed  CAS  Google Scholar 

  56. Karamanoglu M, O’Rourke MF, Avolio AP, et al. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14:160–7.

    Article  PubMed  CAS  Google Scholar 

  57. Borow KM, Newburger JW. Noninvasive estimation of central aortic pressure using the oscillometric method for analysing systemic artery pulsatile blood flow. Am Heart J. 1982;103:879–86.

    Article  PubMed  CAS  Google Scholar 

  58. Gosse P, Lasserre R, Minifie C, et al. Arterial stiffness evaluated by measurement of the QKD interval is an independent predictor of cardiovascular events. Am J Hypertens. 2005;18:470–6.

    Article  PubMed  Google Scholar 

  59. Wassertheurer S, Mayer C, Breitenecker F. Modeling arterial and left ventricular coupling for non-invasive measurement. Simul Model Pract Theory. 2008;16:988–97.

    Article  Google Scholar 

  60. Wassertheurer S, Kropf J, Weber T, et al. A new oscillometric method for pulse wave analysis: comparison with a common tonometric method. J Human Hypertens. 2010;24:498–504.

    Article  CAS  Google Scholar 

  61. Horvath IG, Nemeth A, Lenkey Z, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28:2068–75.

    PubMed  CAS  Google Scholar 

  62. Lowe A, Harrison W, El-Aklouk E, et al. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveform. J Biomech. 2009;42:2111–5.

    Article  PubMed  CAS  Google Scholar 

  63. Baulmann J, Schillings U, Rickert S, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26:523–8.

    Article  PubMed  CAS  Google Scholar 

  64. Trachet B, Raymond P, Kips J, et al. Validation of the arteriograph working principle: questions still remain—reply 2. J Hypertens. 2011;29:1662–3.

    Article  PubMed  CAS  Google Scholar 

  65. • Parati G, De Buyzere M. Evaluating aortic stiffness through an arm cuff oscillometric device: is validation against invasive measurements enough? J Hypertens 2010;28:2003–6. This is a thoughtful editorial on practical implications of arterial stiffening.

    Article  PubMed  CAS  Google Scholar 

  66. •• Reference Values for Arterial Stiffness Collaboration. Determinants of pulse wave velocity in healthy people and in presence of cardiovascular risk factors: establishing normal and reference values. Eur Heart J 2010;31:2338–50. This is an authoritative review by experts on accurate measurement of aortic pulse wave velocity.

    Google Scholar 

  67. Van Leeuwen-Segarceanu EM, Tromp WF, Bos WJ, et al. Comparison of two instruments measuring carotid-femoral pulse wave velocity: Vicoder versus SphygmoCor. J Hypertens. 2010;28:1687–91.

    Article  PubMed  CAS  Google Scholar 

  68. Weissler AM, Harris WS, Schoenfeld CD. Systolic time intervals in heart failure in man. Circulation. 1969;37:149.

    Google Scholar 

  69. Gallagher DE. Analysis of pressure wave propagation in the human upper limb: physical determinants and clinical applications. MD thesis. University of New South Wales, Sydney, Australia 1993

  70. Kelly R, Daley J, Avolio A, et al. Arterial dilation and reduced wave reflection: benefit of dilevanol in hypertension. Hypertension. 1989;14:14–21.

    PubMed  CAS  Google Scholar 

  71. Asmar RG, London GM, O’Rourke MF, Safar ME. REASON Project Coordinators and Investigators. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patients. Hypertension. 2001;38:922–6.

    Article  PubMed  CAS  Google Scholar 

  72. de Luca N, Asmar RG, London GM, et al. REASON Project Investigators. Selective reduction of cardiac mass and central blood pressure on low-dose combination of perindopril/indapamide in hypertensive subjects. J Hypertens. 2004;22:1623–30.

    Article  PubMed  Google Scholar 

  73. Hashimoto J, Imai Y, O’Rourke MF. Indices of pulse wave analysis are better predictors of left ventricular mass reduction than cuff pressure. Am J Hypertens. 2007;20:378–84.

    Article  PubMed  Google Scholar 

  74. Mitchell GF, Izzo Jr JL, Lacourciere Y, et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension. Circulation. 2002;105:2955–61.

    Article  PubMed  CAS  Google Scholar 

  75. Mitchell GF, Lacourciere Y, Arnold JMO, et al. Changes in aortic stiffness and augmentation index after acute converting enzyme or vasopeptidase inhibition. Hypertension. 2005;46:1111–7.

    Article  PubMed  CAS  Google Scholar 

  76. Mitchell GF, Arnold JMO, Dunlap ME, et al. Pulsatile hemodynamic effects of candesartan in patients with chronic heart failure: the CHARM Program. Eur J Heart Fail. 2006;8:191–7.

    Article  PubMed  CAS  Google Scholar 

  77. Mitchell GF, Dunlap ME, Wamica W, et al. for the PEACE Investigators. Long term trandolapril treatment is associated with reduced aortic stiffness. Hypertension. 2007;49:1271–7.

    Article  PubMed  CAS  Google Scholar 

  78. Mitchell GF, Gudnason V, Lauer LJ, et al. Hemodynamics of increased pulse pressure in older women in the community-based age, gene/environment susceptibility: Reykjavik Study. Hypertension. 2008;51:1123–8.

    Article  PubMed  CAS  Google Scholar 

  79. Mitchell GF, Parise H, Benjamin EJ, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43:1239–45.

    Article  PubMed  CAS  Google Scholar 

  80. Mitchell GF, Wang N, Palmisano JN, et al. Hemodynamic correlates of blood pressure across the adult age spectrum: non-invasive evaluation in the Framingham Heart Study. Circulation. 2010;122:1379–86.

    Article  PubMed  Google Scholar 

  81. O’Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increases with age and isolated systolic hypertension. Hypertension. 2005;45:652–8.

    Article  PubMed  Google Scholar 

  82. • O’Rourke MF, Safar ME, Roman MJ, et al. Central pressure waveforms and cardiovascular events. Circulation 2010;122:e512. This paper challenges the Framingham investigators on the method used to estimate aortic pressure.

    Article  Google Scholar 

  83. Dart AM, Gatzka CD, Kingwell BA, et al. Brachial blood pressure but not carotid arterial waveforms predict cardiovascular events in elderly female hypertensives. Hypertension. 2006;47:785–90.

    Article  PubMed  CAS  Google Scholar 

  84. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19:1037–44.

    Article  PubMed  Google Scholar 

  85. Verbeke F, Segers P, Heireman S, et al. Noninvasive assessment of local pulse pressure: Importance of brachial-to-radial pressure amplification. Hypertension. 2005;46:244–8.

    Article  PubMed  CAS  Google Scholar 

  86. Roman MJ, Ganau A, Saba PS, et al. Impact of arterial stiffening on left ventricular structure. Hypertension. 2000;36:489–94.

    PubMed  CAS  Google Scholar 

  87. Roman MJ, Devereux RB, Kizer JR, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressures: the Strong Heart Study. Hypertension. 2007;50:197–203.

    Article  PubMed  CAS  Google Scholar 

  88. Pini R, Cavallini MC, Palmieri V, et al. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population: the ICARe Dicomano study. J Am Coll Cardiol. 2008;51:2432–9.

    Article  PubMed  Google Scholar 

  89. Wang KL, Cheng HM, Chuang SY, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens. 2009;27:461–7.

    Article  PubMed  CAS  Google Scholar 

  90. Protogerou A, Papadogiannis D, Blacher J. “Central pulse pressure versus peripheral pulse pressure”: case still open? Eur Heart J. 2010; online March 22.

  91. Vlachopoulos C, Aznaouridis K, O’Rourke MF et al. Towards the final verdict. Re: “Central pulse pressure versus peripheral pulse pressure: case still open?” Eur Heart J. 2010; online April 13.

  92. Schillaci G, Grassi G. Central blood pressure: getting to the heart of the matter. J Hypertens. 2010;28:237–9.

    Article  PubMed  CAS  Google Scholar 

  93. Ludwig C. Contributions to the knowledge of the influence of the respiratory movements upon the blood flow in the arterial system. In: Ruskin A, Charles CT (ed). Classics in Arterial Hypertension. Springfield IL, Charles C Thomas.

  94. Palatini P, Parati G. Blood pressure measurement in very obese patients: a challenging problem. J Hypertens. 2011;29:425–9.

    Article  PubMed  CAS  Google Scholar 

  95. Fetics B, Nevo E, Chen CH, Kass DA. Parametric model derivation of transfer function for non-invasive estimation of aortic pressure by radial tonometry. IEEE Trans Biomed Eng. 1999;46:698–706.

    Article  PubMed  CAS  Google Scholar 

  96. Zuo JL, Li Y, Yan ZJ, et al. Validation of the central blood pressure estimation by the SphygmoCor system in Chinese. Blood Press Monit. 2010;15:268–74.

    Article  PubMed  Google Scholar 

  97. Filipovsky J, Svobodova V, Pecen L. Reproducibility of radial pulse wave analysis in healthy subjects. J Hypertens. 2000;18:1033–40.

    Article  PubMed  CAS  Google Scholar 

  98. Wilkinson IB, Franklin SS, Hall IR, et al. Pressure amplification explains why pulse pressure is unrelated to risk in young subjects. Hypertension. 2001;38:1461–6.

    Article  PubMed  CAS  Google Scholar 

  99. Williams B, Lacy PS, Thom SM, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation. 2006;113:1213–25.

    Article  PubMed  CAS  Google Scholar 

  100. Papaioannou TG, Lekakis JP, Karatzis EN, et al. Transmission of calibration errors (input) by generalized transfer functions to the aortic pressures (output) at different hemodynamic states. Int J Cardiol. 2006;110:46–52.

    Article  PubMed  Google Scholar 

  101. Crilly M, Coch C, Bruce M, et al. Repeatability of central aortic blood pressures measured noninvasively using radial artery applanation tonometry and peripheral pulse wave analysis. Blood Press. 2007;16:262–9.

    Article  PubMed  Google Scholar 

  102. McEniery CM, Yasmin, McDonnell B, et al. Central pressure: variability and impact of cardiovascular risk factors. The Anglo-Cardiff Collaborative Trial II. Hypertension. 2008;51:1476–82.

    Article  PubMed  CAS  Google Scholar 

  103. Frimodt-Moller M, Nielsen AH, Kamper AL, Strandgaard S. Reproducibility of pulse wave analysis and pulse wave velocity determination in chronic kidney disease. Nephrol Dial Transplant. 2008;23:594–600.

    Article  PubMed  Google Scholar 

  104. Mitchell GF, Lacourciere Y, Ouellet JP, et al. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship. Circulation. 2003;108:1592–8.

    Article  PubMed  Google Scholar 

  105. Desai AS, Mitchell GF, Fang JC, Creager MA. Central aortic stiffness is increased in patients with heart failure and preserved ejection fraction. J Card Fail. 2009;15:658–64.

    Article  PubMed  Google Scholar 

  106. Lieb W, Larson MG, Benjamin EJ, et al. Multimarker approach to evaluate correlates of vascular stiffness: the Framingham Heart Study. Circulation. 2009;119:37–43.

    Article  PubMed  Google Scholar 

  107. Kelley-Hedgepeth A, Peter I, Montefusco MC, et al. The KCNMB1 E65K variant is associated with reduced central pulse pressure in the community-based Framingham Offspring cohort. J Hypertens. 2009;27:55–60.

    Article  PubMed  CAS  Google Scholar 

  108. Adji A, O”Rourke MF. Determination of central aortic systolic and pulse pressure from the radial artery pressure waveform. Blood Press Monit. 2004;9:115–21.

    Article  PubMed  Google Scholar 

  109. Holland DJ, Sacre JW, McFarlane SJ, et al. Pulse wave analysis is a reproducible technique for measuring central blood pressure during hemodynamic perturbations induced by exercise. Am J Hypertens. 2008;21:1100–6.

    Article  PubMed  Google Scholar 

  110. Jiang XJ, O”Rourke MF, Zhang YQ, et al. Superior effect of an angiotensin-converting enzyme inhibitor over a diuretic for reducing aortic systolic pressure. J Hypertens. 2007;25:1095–9.

    Article  PubMed  CAS  Google Scholar 

  111. Matsui Y, Eguchi K, O’Rourke MF, et al. Differential effects between a calcium channel blocker and a diuretic when used in combination with angiotensin II receptor blocker on central aortic pressure in hypertensive patients. Hypertension. 2009;54:716–23.

    Article  PubMed  CAS  Google Scholar 

  112. Safar ME, Blacher J, Pannier B, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension. 2002;39:735–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

M.F. O’Rourke is the founding director of AtCor Medical, manufacturer of the SphygmoCor® pulse wave analysis system; A. Adji: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. O’Rourke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Rourke, M.F., Adji, A. Noninvasive Studies of Central Aortic Pressure. Curr Hypertens Rep 14, 8–20 (2012). https://doi.org/10.1007/s11906-011-0236-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0236-5

Keywords

Navigation