Skip to main content
Log in

Aldosterone in the Pathogenesis of Chronic Kidney Disease and Proteinuria

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

There has been much recent interest in the role of aldosterone as an independent contributor to the progression of chronic kidney disease. Despite treatment with agents such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, many studies have shown that there is incomplete blockade of the renin-angiotensin cascade evidenced by persistent or rising plasma aldosterone levels despite therapeutic renin-angiotensin blockade. This phenomenon is commonly referred to as “aldosterone escape” and is thought to be one of the main contributors to chronic kidney disease progression despite conventional therapeutics. Animal models of the effects of exposure to exogenous aldosterone demonstrate the development of inflammation and fibrosis in both the myocardium and renal parenchyma. In limited human studies, aldosterone receptor antagonism is associated with decreased proteinuria and improved glomerular filtration rate. Although data support the addition of an aldosterone antagonist to conventional therapy when treating patients with chronic kidney disease, more studies are needed to determine the precise clinical indications and the appropriate safety monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stengel B, Billon S, Van Dijk PC, et al.: Trends in the incidence of renal replacement therapy for end-stage renal disease in Europe, 1990–1999. Nephrol Dial Transplant 2003, 18:1824–1833.

    Article  PubMed  Google Scholar 

  2. US Renal Data System: USRDS 2000 Annual Data Report. Bethesda, MD: The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2000.

  3. Kotchen TA: Chapter 241. Hypertensive vascular disease. In Harrison’s Principles of Internal Medicine, 17th edn. New York: McGraw-Hill; 2011. http://www.accessmedicine.com/content.aspx?aID=2872428.

  4. Bonvalet JP, Alfaidy N, Farman N, Lombes M: Aldosterone: intracellular receptors in human heart. Eur Heart J 1995, 16(Suppl N):92–97

    CAS  PubMed  Google Scholar 

  5. Roland BL, Krozowski ZS, Funder JW: Glucocorticoid receptor, mineralocorticoid receptors, 11 beta-hydroxysteroid dehydrogenase-1 and -2 expression in rat brain and kidney: in situ studies. Mol Cell Endocrinol 1995, 111:R1–R7.

    Article  CAS  PubMed  Google Scholar 

  6. Kornel L, Ramsay C, Kanamarlapudi N, et al.: Evidence for the presence in arterial walls of intracellular-molecular mechanism for action of mineralocorticoids. Clin Exp Hypertens A 1982, 4:1561–1582.

    Article  CAS  PubMed  Google Scholar 

  7. Weber KT, Anversa P, Armstrong PW, et al.: Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 1992, 20:3–16.

    Article  CAS  PubMed  Google Scholar 

  8. Brown NJ, Agirbasli MA, Williams GH, et al.: Effect of activation and inhibition of the renin-angiotensin system on plasma PAI-1. Hypertension 1998, 32:965–971.

    CAS  PubMed  Google Scholar 

  9. Brown NJ, Kim KS, Chen YQ, et al.: Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 2000, 85:336–344.

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Zhang J, Zhang JQ, Ramires FJ: Local angiotensin II and transforming growth factor-beta1 in renal fibrosis of rats. Hypertension 2000, 35:1078–1084.

    CAS  PubMed  Google Scholar 

  11. Epstein M: Aldosterone and the hypertensive kidney: its emerging role as a mediator of progressive renal dysfunction: a paradigm shift. J Hypertens 2001, 19:829–842.

    Article  CAS  PubMed  Google Scholar 

  12. Ullian ME, Schelling JR, Linas SL: Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension 1992, 20:67–73.

    CAS  PubMed  Google Scholar 

  13. Barr CS, Lang CC, Hanson J, et al.: Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995, 76:1259–1265.

    Article  CAS  PubMed  Google Scholar 

  14. Weber MA, Purdy RE: Catecholamine-mediated constrictor effects of aldosterone on vascular smooth muscle. Life Sci 1982, 30:2009–2017.

    Article  CAS  PubMed  Google Scholar 

  15. Arima S, Kohagura K, Xu HL, et al.: Nongenomic vascular action of aldosterone in the glomerular microcirculation. J Am Soc Nephrol 2003, 14:2255–2263.

    Article  CAS  PubMed  Google Scholar 

  16. Nagase M, Shibata S, Yoshida S, et al.: Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 2006, 47:1084–1093.

    Article  CAS  PubMed  Google Scholar 

  17. Pitt B, Zannad F, Remme WJ, et al.: The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999, 341:709–717.

    Article  CAS  PubMed  Google Scholar 

  18. McKelvie RS, Yusuf S, Pericak D, et al.: Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 1999, 100:1056–1064.

    CAS  Google Scholar 

  19. Cicoira M, Zanolla L, Franceschini L, et al.: Relation of aldosterone “escape” despite angiotensin-converting enzyme inhibitor administration to impaired exercise capacity in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2002, 89:403–407.

    Article  CAS  PubMed  Google Scholar 

  20. Lakkis J, Lu WX, Weir MR: RAAS escape: a real clinical entity that may be important in the progression of cardiovascular and renal disease. Curr Hypertens Rep 2003, 5:408–417.

    Article  PubMed  Google Scholar 

  21. Berl T, Katz FH, Henrich WL, et al.: Role of aldosterone in the control of sodium excretion in patients with advanced chronic renal failure. Kidney Int 1978, 14:228–235.

    Article  CAS  PubMed  Google Scholar 

  22. Hene RJ, Boer P, Koomans HA, Mees EJ: Plasma aldosterone concentrations in chronic renal disease. Kidney Int 1982, 21:98–101.

    Article  CAS  PubMed  Google Scholar 

  23. Lijnen P, Staessen J, Fagard R, Amery A: Increase in plasma aldosterone during prolonged captopril treatment. Am J Cardiol 1982, 49:1561–1563.

    Article  CAS  PubMed  Google Scholar 

  24. Schjoedt KJ, Andersen S, Rossing P, et al.: Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 2004, 47:1936–1939.

    Article  CAS  PubMed  Google Scholar 

  25. Quan ZY, Walser M, Hill GS: Adrenalectomy ameliorates ablative nephropathy in the rat independently of corticosterone maintenance level. Kidney Int 1992, 41:326–333.

    Article  CAS  PubMed  Google Scholar 

  26. Rocha R, Chander PN, Khanna K, Zuckerman A, Stier CT, Jr.: Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats. Hypertension 1998, 31:451–458.

    Google Scholar 

  27. Rocha R, Chander PN, Zuckerman A, Stier CT Jr: Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 1999, 33:232–237.

    CAS  PubMed  Google Scholar 

  28. Greene EL, Kren S, Hostetter TH: Role of aldosterone in the remnant kidney model in the rat. J Clin Invest 1996, 98:1063–1068.

    Article  CAS  PubMed  Google Scholar 

  29. Goldblatt H, Lynch J, Hanzal RF, Summerville WW: Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 1934, 59:347–379.

    CAS  Google Scholar 

  30. Nicoletti A, Heudes D, Hinglais N, et al.: Left ventricular fibrosis in renovascular hypertensive rats. Effect of losartan and spironolactone. Hypertension 1995, 26:101–111.

    CAS  Google Scholar 

  31. Aldigier JC, Kanjanbuch T, Ma LJ, et al.: Regression of existing glomerulosclerosis by inhibition of aldosterone. J Am Soc Nephrol 2005, 16:3306–3314.

    Article  CAS  PubMed  Google Scholar 

  32. Sato A, Hayashi K, Naruse M, Saruta T: Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension 2003, 41:64–68.

    Article  CAS  PubMed  Google Scholar 

  33. Sato A, Hayashi K, Saruta T: Antiproteinuric effects of mineralocorticoid receptor blockade in patients with chronic renal disease. Am J Hypertens 2005, 18:44–49.

    Article  CAS  PubMed  Google Scholar 

  34. Brown NJ, Nakamura S, Ma L, Nakamura I, Donnert E, Freeman M, Vaughan DE, Fogo AB: Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int 2000, 58(3):1219–1227.

    Google Scholar 

  35. Nitta K, Uchida K, Nihei H: Spironolactone and angiotensin receptor blocker in nondiabetic renal diseases. Am J Med 2004, 117:444–445.

    Article  PubMed  Google Scholar 

  36. MacFadyen RJ, Lee AF, Morton JJ, et al.: How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 1999, 82:57–61.

    CAS  PubMed  Google Scholar 

  37. Epstein M: Aldosterone blockade: an emerging strategy for abrogating progressive renal disease. Am J Med 2006, 119:912–919.

    Article  CAS  PubMed  Google Scholar 

  38. Remuzzi G, Bertani T: Pathophysiology of progressive nephropathies. N Engl J Med 1998, 339:1448–1456.

    Article  CAS  PubMed  Google Scholar 

  39. Epstein M, Williams GH, Weinberger M, et al.: Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol 2006, 1:940–951.

    Article  CAS  PubMed  Google Scholar 

  40. Ponda MP, Hostetter TH: Aldosterone antagonism in chronic kidney disease. Clin J Am Soc Nephrol 2006, 1:668–677.

    Article  CAS  PubMed  Google Scholar 

  41. Bianchi S, Bigazzi R, Campese VM: Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int 2006, 70:2116–2123.

    Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito M. Campese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Ku, E. & Campese, V.M. Aldosterone in the Pathogenesis of Chronic Kidney Disease and Proteinuria. Curr Hypertens Rep 12, 303–306 (2010). https://doi.org/10.1007/s11906-010-0116-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0116-4

Keywords

Navigation