Skip to main content
Log in

Failing energetics in failing hearts

  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

The perpetual and vigorous nature of heart muscle work requires efficient myocardial energetics. This depends not only on adequate ATP production, but also on efficient delivery of ATP to muscle ATPases and rapid removal of ADP and other by-products of ATP hydrolysis. Indeed, recent evidence indicates that defects in communication between ATP-producing and ATP-consuming cellular sites are a major factor contributing to energetic deficiency in heart failure. In particular, the failing myocardium is characterized by reduced catalytic activity of creatine kinase, adenylate kinase, carbonic anhydrase, and glycolytic enzymes, which collectively facilitate ATP delivery and promote removal of ADP, Pi, and H+ from cellular ATPases. Although energy transfer through adenylate kinase and glycolytic enzymes has been recognized as an adaptive mechanism supporting compromised muscle energetics, in the failing myocardium the total compensatory potential of these systems is diminished. A gradual accumulation of defects at various steps in myocardial energetic signaling, along with compromised compensatory mechanisms, precipitates failure of the whole cardiac energetic system, ultimately contributing to myocardial dysfunction. These advances in our understanding of the molecular bioenergetics in heart failure provide a new perspective toward improving the energetic balance of the failing myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ingwall JS: Is cardiac failure a consequence of decreased energy reserve? Circulation 1993, 87:VII58-VII62.

    Google Scholar 

  2. Taegtmeyer H: Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 1994, 19:59–113.

    Article  PubMed  CAS  Google Scholar 

  3. Opie LH: Substrate and energy metabolism in the heart. In Physiology and pathophysiology of the heart. Edited by Sperelakis N. Boston: Kluwer; 1995:367–384.

    Google Scholar 

  4. Saks VA, Tiivel T, Kay L, et al.: On the regulation of cellular energetics in health and disease. Mol Cell Biochem 1996, 160–161:195–208.

    Article  PubMed  Google Scholar 

  5. Schwartz K, Mercadier JJ: Molecular and cellular biology of heart failure. Curr Opin Cardiol 1996, 11:227–236.

    Article  PubMed  CAS  Google Scholar 

  6. Mittmann C, Eschenhagen T, Scholz H: Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc Res 1998, 39:267–75.

    Article  PubMed  CAS  Google Scholar 

  7. Shen WQ, Asai K, Uechi M, et al.: Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs — a compensatory role for the parallel loss of creatine. Circulation 1999, 100:2113–2118. Comprehensive study of failing heart energetics and compensatory mechanisms.

    PubMed  CAS  Google Scholar 

  8. Tian R, Ingwall JS: Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol 1996, 270:H1207-H1216.

    PubMed  CAS  Google Scholar 

  9. Jennings RB, Murry CE, Reimer KA: Energy metabolism in preconditioned and control myocardium: effect of total ischemia. J Mol Cell Cardiol 1991, 23:1449–1458.

    Article  PubMed  CAS  Google Scholar 

  10. Hassinen IE, Vuorinen KH, Ylitalo K, et al.: Role of cellular energetics in ischemia-reperfusion and ischemic preconditioning of myocardium. Mol Cell Biochem 1998, 184:393–400.

    Article  PubMed  CAS  Google Scholar 

  11. Kloner RA, Bolli R, Marban E, et al.: Medical and cellular implications of stunning, hibernation, and preconditioning. Circulation 1998, 97:1848–1867. Excellent review from a group of experts in the field.

    PubMed  CAS  Google Scholar 

  12. Dzeja PP, Pucar D, Redfield MM, et al.: Reduced activity of enzymes coupling ATP-generating with ATP-consuming processes in the failing myocardium. Mol Cell Biochem 1999, 201:33–40. First description of defects in the catalytic activities of enzymes responsible for intracellular energy communication in failing hearts.

    Article  PubMed  CAS  Google Scholar 

  13. Taegtmeyer H, Goodwin GW, Doenst T, et al.: Substrate metabolism as determinant for post-ischemic functional recovery of the heart. Am J Cardiol 1997, 80:3A-10A.

    Article  PubMed  CAS  Google Scholar 

  14. Lewandowski ED, Yu X, LaNoue KF, et al.: Altered metabolite exchange between subcellular compartments in intact post-ischemic rabbit hearts. Circ Res 1997, 81:165–175.

    PubMed  CAS  Google Scholar 

  15. Zuurbier CJ, van Beek JHGM: Mitochondrial response to heart rate steps in isolated rabbit heart is slowed after myocardial stunning. Circ Res 1997, 81:69–75.

    PubMed  CAS  Google Scholar 

  16. Dzeja PP, Zeleznikar RJ, Goldberg ND: Adenylate kinase: kinetic behavior in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochem 1998, 84:169–182. Review on the role of phosphotransfer in cellular energy homeostasis, and interrelationships between adenylate kinase, creatine kinase, and glycolytic systems.

    Article  Google Scholar 

  17. Dzeja PP, Terzic A: Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. FASEB J 1998, 12:523–529. Review on the role of phosphotransfer reactions in promoting cellular energy signaling, including regulation of ATP-sensing processes.

    PubMed  CAS  Google Scholar 

  18. Wiese S, Katz DP, Manner T, et al.: Impact of specific substrate supply on efficiency of cardiac function: an update. Nutrition 1993, 9:495–506.

    PubMed  CAS  Google Scholar 

  19. Takahashi E, Doi K: Regulation of oxygen diffusion in hypoxic isolated cardiac myocytes. Am J Physiol 1996, 271:H1734-H1738.

    PubMed  CAS  Google Scholar 

  20. Godecke A, Flogel U, Zanger K, et al.: Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci U S A 1999, 96:10495–10500. Original study on myoglobin-deficient transgenic hearts demonstrating the significance of compensatory mechanisms.

    Article  PubMed  CAS  Google Scholar 

  21. Weil J, Eschenhagen T, Magnussen O, et al.: Reduction of myocardial myoglobin in bovine dilated cardiomyopathy. J Mol Cell Cardiol 1997, 29:743–751.

    Article  PubMed  CAS  Google Scholar 

  22. Heinke MY, Wheeler CH, Yan JX, et al.: Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis 1999, 20:2086–2093.

    Article  PubMed  CAS  Google Scholar 

  23. Kammermeier H, Wein B, Gerards P, et al.: Barriers in cardiac substrate supply. Bas Res Cardiol 1985, 80:89–92.

    CAS  Google Scholar 

  24. Auffermann W, Wu ST, Parmley WW, et al.: Glycolysis in heart failure: A 31P-NMR and surface fluorometry study. Bas Res Cardiol 1990, 85:342–357.

    Article  CAS  Google Scholar 

  25. Askenasy N, Navon G: Intermittent ischemia — energy metabolism, cellular volume regulation, adenosine and insights into preconditioning. J Mol Cell Cardiol 1997, 29:1715–1730.

    Article  PubMed  CAS  Google Scholar 

  26. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG: Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 1997, 33:243–257.

    Article  PubMed  CAS  Google Scholar 

  27. Regitz V, Fleck E: Myocardial adenine nucleotide concentrations and myocardial norepinephrine content in patients with heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 1992, 69: 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  28. McDonald KM, Yoshiyama M, Francis GS, et al.: Myocardial bioenergetic abnormalities in a canine model of left ventricular dysfunction. J Am Coll Cardiol 1994, 23:786–793.

    Article  PubMed  CAS  Google Scholar 

  29. Pouleur H, Hayashida W: Diastolic dysfunction and myocardial energetics. In Diastolic relaxation of the heart. Edited by Lorell BH, Grossman, W. Boston: Kluwer; 1994:277–282.

    Google Scholar 

  30. Neubauer S, Horn M, Cramer M, et al.: Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 1997, 96:2190–2196.

    PubMed  CAS  Google Scholar 

  31. Cohn JN, Bristow MR, Chien KR, et al.: Report of the National Heart, Lung, and Blood Institute Special Emphasis Panel on Heart Failure Research. Circulation 1997, 95:766–770.

    PubMed  CAS  Google Scholar 

  32. Dzeja PP, Vitkevicius KT, Redfield MM, et al.: Adenylate kinase-catalyzed phosphotransfer in the myocardium: increased contribution in heart failure. Circ Res 1999, 84:1137–1143. First study identifying adenylate kinase as an alternative phosphotransfer system in heart muscle, and providing measurements of energy fluxes through individual phosphotransfer reactions in failing myocardium.

    PubMed  CAS  Google Scholar 

  33. O’Brien PJ, Gwathmey JK: Myocardial Ca 2+- and ATP-cycling imbalances in end-stage dilated and ischemic cardiomyopathies. Cardiovasc Res 1995, 30:394–404.

    Article  PubMed  CAS  Google Scholar 

  34. Heinke MY, Wheeler CH, Chang D, et al.: Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis 1998, 19:2021–2030.

    Article  PubMed  CAS  Google Scholar 

  35. Hayashi Y, Takeuchi M, Takaoka H, et al.: Alteration in energetics in patients with left ventricular dysfunction after myocardial infarction: increased oxygen cost of contractility. Circulation 1996, 93:932–939.

    PubMed  CAS  Google Scholar 

  36. Panagia V, Lee SL, Singh A, et al.: Impairment of mitochondrial and sarcoplasmic reticular functions during the development of heart failure in cardiomyopathic (UM-X7.1) hamsters. Can J Cardiol 1986, 2:236–247.

    PubMed  CAS  Google Scholar 

  37. Katz AM: Energy requirements of contraction and relaxation: implications for inotropic stimulation of the failing heart. Bas Res Cardiol 1989, 84:47–53.

    Google Scholar 

  38. Kalsi KK, Smolenski RT, Pritchard RD, et al.: Energetics and function of the failing human heart with dilated or hypertrophic cardiomyopathy. Eur J Clin Invest 1999, 29:469–477.

    Article  PubMed  CAS  Google Scholar 

  39. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for bcl-2 regulation of apoptosis. Science 1997, 275:1132–1136.

    Article  PubMed  CAS  Google Scholar 

  40. Olivetti G, Abbi R, Quaini F, et al.: Apoptosis in the failing human heart. N Engl J Med 1997, 336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  41. Ottaway JH, Mowbray J: The role of compartmentation in the control of glycolysis. Curr Top Cell Reg 1977, 12:107–208.

    CAS  Google Scholar 

  42. Wallimann T, Wyss M, Brdiczka D, et al.: Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the "phosphocreatine circuit" for cellular energy homeostasis. Biochem J 1992, 28:21–40.

    Google Scholar 

  43. van Deursen J, Heerschap A, Oerlemans F, et al.: Skeletal muscle of mice deficient in muscle creatine kinase lack burst activity. Cell 1993, 74:621–631.

    Article  PubMed  Google Scholar 

  44. Tian R, Christe ME, Spindler M, et al.: Role of MgADP in the development of diastolic dysfunction in the intact beating rat heart. J Clin Invest 1997, 99:745–751.

    Article  PubMed  CAS  Google Scholar 

  45. Veksler VI, Kuznetsov AV, Anflous K, et al.: Muscle creatine kinase-deficient mice. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 1995, 270:19921–19929.

    Article  PubMed  CAS  Google Scholar 

  46. Dzeja PP, Zeleznikar RJ, Goldberg ND: Suppression of creatine kinase-catalyzed phosphotransfer results in increased phosphoryl transfer by adenylate kinase in intact skeletal muscle. J Biol Chem 1996, 271:12847–12851.

    Article  PubMed  CAS  Google Scholar 

  47. Saupe KW, Spindler M, Tian R, Ingwall JS: Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Circ Res 1998, 82:898–907. First study describing reduced energetic efficiency in creatine kinase-deficient transgenic hearts.

    PubMed  CAS  Google Scholar 

  48. Steeghs K, Benders A, Oerlemans F, et al.: Altered Ca 2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 1997, 89:93–103.

    Article  PubMed  CAS  Google Scholar 

  49. Nascimben L, Ingwall JS, Pauletto P, et al.: Creatine kinase system in failing and nonfailing human myocardium. Circulation 1996, 94:1894–1901.

    PubMed  CAS  Google Scholar 

  50. Soboll S, Brdiczka D, Jahnke D, et al.: Octamer-dimer transitions of mitochondrial creatine kinase in heart disease. J Mol Cell Cardiol 1999, 31:857–866.

    Article  PubMed  CAS  Google Scholar 

  51. Robitaille PM, Merkle H, Sako E, et al.: Measurement of ATP synthesis rates by 31P-NMR spectroscopy in the intact myocardium in vivo. Mag Res Med 1990, 15:8–24.

    Article  CAS  Google Scholar 

  52. Gros G, Moll W, Hoppe H, Gros H: Proton transport by phosphate diffusion: A mechanism of facilitated CO2 transfer. J Gen Physiol 1976, 67:773–790.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzeja, P.P., Redfield, M.M., Burnett, J.C. et al. Failing energetics in failing hearts. Curr Cardiol Rep 2, 212–217 (2000). https://doi.org/10.1007/s11886-000-0071-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-000-0071-9

Keywords

Navigation