Skip to main content
Log in

A new approach to asymptotic formulas for eigenfunctions of discontinuous non-selfadjoint Sturm–Liouville operators

  • Published:
Journal of Pseudo-Differential Operators and Applications Aims and scope Submit manuscript

Abstract

In the present paper, boundary value problems for discontinuous non-selfadjoint Sturm–Liouville operators on a finite interval with boundary conditions nonlinearly dependent on the spectral parameter are considered, and a new approach for studying the asymptotic representation of the eigenfunctions and their partial derivatives is presented. We obtain the asymptotic representation of the solutions and the eigenvalue, and study some of their main properties. Then, we provide a constructive procedure to obtain the asymptotic form of the eigenfunctions and their partial derivatives in discontinuous case by the canonical form of the Bessel functions \(J_{\frac{1}{2}}(z)\), \(J_{\frac{3}{2}}(z)\) and their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amirov, R.K.: On a system of Dirac differential equations with discontinuity conditions inside an interval. Ukr. Math. J. 57, 712–727 (2005)

    Article  MathSciNet  Google Scholar 

  2. Bailey, P.B., Everitt, W.N., Weidmann, J., Zettl, A.: Regular approximations of singular Sturm–Liouville problems. Results Math. 23, 3–22 (1993)

    Article  MathSciNet  Google Scholar 

  3. Buterin, S.A.: On inverse spectral problem for non-selfadjoint Sturm–Liouville operator on a finite interval. J. Math. Anal. Appl. 335, 739–749 (2007)

    Article  MathSciNet  Google Scholar 

  4. Eves, H.W.: Functions of a Complex Variable. Prindle, Weber and Schmidt Inc., Boston (1966)

    Google Scholar 

  5. Freiling, G., Yurko, V.A.: Inverse Sturm–Liouville Problems and their Applications. NOVA Science Publishers, New York (2001)

    MATH  Google Scholar 

  6. Freiling, G., Yurko, V.A.: Inverse problems for Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter. Inverse Probl. 26, 055003 (2010). https://doi.org/10.1088/0266-5611/26/5/055003

    Article  MathSciNet  MATH  Google Scholar 

  7. Gesztesy, F., Simon, B.: Uniqueness theorems in inverse spectral theory for one-dimensional Schr\(\ddot{o}\)dinger operators. Trans. Am. Math. Soc. 348, 349–373 (1996)

    Article  Google Scholar 

  8. Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  MathSciNet  Google Scholar 

  9. Goktas, S., Kerimov, N.B., Maris, E.A.: On the uniform convergence of spectral expansions for a spectral problem with a boundary condition rationally depending on the eigenparameter. J. Korean Math. Soc. 54, 1175–1187 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Guliyev, N.J.: Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions. Inverse Probl. 21, 1315–1330 (2005)

    Article  MathSciNet  Google Scholar 

  11. Hald, O.H.: Discontinuous inverse eigenvalue problems. Commun. Pure Appl. Math. 37, 539–577 (1984)

    Article  MathSciNet  Google Scholar 

  12. Harris, B.J., Marzano, F.: Eigenvalue approximations for linear periodic differential equations with a singularity. Electron. J. Qual. Theory Differ. Equ. 7, 1–18 (1999)

    Article  MathSciNet  Google Scholar 

  13. Koyunbakan, H., Gulsen, T., Yilmaz, E.: Inverse nodal problem for a \(p\)-Laplacian Sturm–Liouville equation with polynomially boundary condition. Electron. J. Differ. Equ. 7, 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Lapwood, F.R., Usami, T.: Free Oscillations of the Earth. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  15. Levitan, B.M.: Inverse Sturm–Liouville Problems, Nauka, Moscow, 1984; English transl. VNU Sci. Press, Utrecht (1987)

    Google Scholar 

  16. Levitan, B.M., Gasymov, M.G.: Determination of a differential equation from two of its spectra. Russ. Math. Surv. 19, 1–63 (1964)

    Article  Google Scholar 

  17. Levitan, B.M., Sargsyan, I.S.: Some problems in the theory of the Sturm–Liouville equation. Russ. Math. Surv. 15, 3–98 (1960)

    Article  MathSciNet  Google Scholar 

  18. Likov, A.V., Mikhailov, Y.A.: The Theory of Heat and Mass Transfer. Qosenergaizdat, Moscow-Leningrad (1963)

    Google Scholar 

  19. Litvinenko, O.N., Soshnikov, V.I.: The Theory of Heterogeneous Lines and Their Applications in Radio Engineering. Radio, Moscow (1964)

    Google Scholar 

  20. Marchenko, V.A.: Sturm–Liouville Operators and Their Applications, Revised edn. AMS Chelsea Publishing, Stanford (2011)

  21. Mosazadeh, S.: Energy levels of a physical system and eigenvalues of an operator with a singular potential. Rep. Math. Phys. 82, 137–148 (2018)

    Article  MathSciNet  Google Scholar 

  22. Neamaty, A.: Some properties of the eigenfunctions of Sturm–Liouville problem with two turning points. Iran. J. Sci. Technol. Trans. A 27, 381–388 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Neamaty, A., Mosazadeh, S.: On the canonical solution of Sturm–Liouville problem with singularity and turning point of even order. Can. Math. Bull. 54, 506–518 (2011)

    Article  MathSciNet  Google Scholar 

  24. Olver, F.W.J., Maximon, L.C.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

    Google Scholar 

  25. Shkalikov, A.A.: Boundary-value problems for ordinary differential equations with a parameter in the boundary conditions. Funct. Anal. Appl. 16, 324–326 (1982)

    Article  MathSciNet  Google Scholar 

  26. Shkalikov, A.A.: Boundary problems for ordinary differential equations with parameter in the boundary conditions. J. Math. Sci. 33, 1311–1342 (1986)

    Article  Google Scholar 

  27. Shkalikov, A.A.: Basis properties of root functions of differential operators with spectral parameter in the boundary conditions. Differ. Equ. 55, 631–643 (2019)

    Article  MathSciNet  Google Scholar 

  28. Trubowitz, E.: Inverse Spectral Theory. Academic Press Inc., London (1987)

    MATH  Google Scholar 

  29. Wang, Y.P., Koyunbakan, H.: On the Hochstadt–Lieberman theorem for discontinuous boundary-valued problems. Acta Math. Sin. Eng. Ser. 30, 985–992 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the University of Kashan under Grant No. 985969/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyfollah Mosazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosazadeh, S. A new approach to asymptotic formulas for eigenfunctions of discontinuous non-selfadjoint Sturm–Liouville operators. J. Pseudo-Differ. Oper. Appl. 11, 1805–1820 (2020). https://doi.org/10.1007/s11868-020-00350-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11868-020-00350-2

Keywords

Mathematics Subject Classification

Navigation