Skip to main content

Advertisement

Log in

Recent Advances in the Management of Acute Lymphoblastic Leukaemia

  • Leukemia (PH Wiernik, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The last few years have seen unprecedented advances in treatment options for patients diagnosed with acute lymphoblastic leukaemia (ALL) in adulthood. New targeted drug therapies have been shown in randomised trials to offer significant survival improvements above standard-of-care (SoC) for relapsed disease, whilst being relatively well tolerated. Chimeric antigen receptor T cell therapy (CAR-T) has offered spectacular promise amongst the young adult population, with the possibility of cure for refractory disease. It has reversed the paradigm that transplant is the only curative option at relapse. Data is awaited regarding its effectiveness in the older adult population. Nelarabine represents an advance, but there remains a pressing need to develop new therapies with efficacy against T-ALL, especially in the relapse setting.

Outcomes for younger adults have improved with the adoption of paediatric-like regimens, with a focus on dose intensity and heavy use of pegylated asparaginase. Defining who falls into the “young adult” category and would benefit from this approach remains a controversial area. In elderly patients with ALL, the introduction of tyrosine kinase inhibitors (TKIs) and reduction in standard chemotherapy intensity (especially for those with Philadelphia-positive disease) have significantly reduced treatment-associated mortality and resulted in durable remissions with good quality of life.

Bone marrow transplantation remains a key therapy in adult ALL, and is still the treatment of choice for relapsed disease. The mortality associated with a myeloablative approach can be substantially lowered by reduced intensity conditioning, without an apparently significant reduction in efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119(1):34–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. • Goldstone AH, Richards SM, Lazarus HM, et al. In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood. 2008;111(4):1827–33 Paper which determined the sibling allograft in first remission as the SoC for adult ALL.

    CAS  PubMed  Google Scholar 

  3. Jabbour E, O’Brien S, Konopleva M, et al. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukaemia. Cancer. 2015;121:2517–28.

    PubMed  Google Scholar 

  4. Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29:532–43.

    PubMed  Google Scholar 

  5. Rowe JM, Buck G, Burnett AK, Chopra R, Wiernik PH, Richards SM, et al. ECOG/MRC/NCRI Adult Leukaemia Working Party. Induction therapy for adults with acute lymphoblastic leukemia; results of more than 1500 patients from the international ALL trial: MRC UKALL XII/ECOG E2993. Blood. 2005;106(12):3760–7.

    CAS  PubMed  Google Scholar 

  6. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G, et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomised prospective trial (UKALL XII/ECOG 2993). Blood. 2009;114(25):5136–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bassan R, Spinelli O, Oldani E, et al. Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in acute lymphoblastic leukemia (ALL). Blood. 2009;113(18):4153–62.

    CAS  PubMed  Google Scholar 

  8. Bruggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23.

    PubMed  Google Scholar 

  9. Beldjord K, Chevret S, Asnafi V, et al. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia. Blood. 2014;123(24):3739–49.

    CAS  PubMed  Google Scholar 

  10. Tavernier E, Boiron JM, Huguet F, et al. Outcome of treatment after first relapse in adults initially treated by the LALA-94 trial. Leukemia. 2007;21:1907–14.

    CAS  PubMed  Google Scholar 

  11. Oriol A, Vives S, Hernandez-Rivas JM, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four risk adapted trials by the PETHEMA Study Group. Haematologica. 2010;95:589–96.

    PubMed  PubMed Central  Google Scholar 

  12. Kantarjian HM, Thomas D, Ravandi F, et al. Defining the course and prognosis of adults with acute lymphocytic leukemia in first savage after induction failure or short first remission duration. Cancer. 2010;166:5568–74.

    Google Scholar 

  13. • Gokbuget N, Basara N, Baurmann H, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011;118(13):3503–11 Largest study setting out activity of nelarabine in R/R T-ALL.

    Google Scholar 

  14. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Medical Research Council of the United Kingdom Adult ALL Working Party; Eastern Cooperative Oncology Group. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109(3):944–50.

    CAS  PubMed  Google Scholar 

  15. Raponi S, DePropis MS, Intoppa S, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52:1098–107.

    CAS  PubMed  Google Scholar 

  16. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalysed by a single chain bispecific antibody. Int J Cancer. 2002;100:690–7.

    CAS  PubMed  Google Scholar 

  17. Loffler S, Gruen M, Wuchter C, et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti CD19/anti CD3 single chain antibody construct. Leukemia. 2003;17:900–9.

    CAS  PubMed  Google Scholar 

  18. •• Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukaemia. N Engl J Med. 2017;376:836–47 Phase 3, multicentre trial showing a survival benefit for the use of blinatumomab in R/R B-ALL against SoC.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jabbour EJ, Gokbuget N, Kantarjian HM, et al. Transplantation in adults with relapsed/refractory acute lymphoblastic leukemia who are treated with blinatumomab from a phase 3 study. Cancer. 2019;125(23):4181–92.

    CAS  PubMed  Google Scholar 

  20. •• Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31 Phase 2 study showing encouraging OS rates for patients with B-ALL in CR, but with detectable MRD, for the use of blinatumomab. On the basis of this paper, blinotumumab has gained NICE approval in the UK.

    PubMed  PubMed Central  Google Scholar 

  21. Haso W, Lee DW, Shah NN, et al. Anti CD22 chimeric antigen receptors targeting B cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas X. Inotuzumab ozogamicin in the treatment of B-cell acute lymphoblastic leukemia. Expert Opin Investig Drugs. 2012;21:871–8.

    CAS  PubMed  Google Scholar 

  23. •• Kantarjian H, DeAngelo DJ, Stelljes MS, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukaemia. N Engl J Med. 2016;375(8):740–53 Phase 3, multicentre trial showing a survival benefit (and impressive rates of MRD negativity amongst responders) for the use of inotuzumab in R/R ALL against SoC.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kantarjian HM, DeAngelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474–87.

    CAS  PubMed  Google Scholar 

  25. Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD, et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised phase 3 INO-VATE study. Lancet Haematol. 2017;4(8):PE387–98.

    Google Scholar 

  26. Marks DI, Kebriaei P, Stelljes M, Gökbuget N, Kantarjian H, Advani AS, et al. Outcomes of allogeneic stem cell transplantation after inotuzumab ozogamicin treatment for relapsed or refractory acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2019;25(9):1720–9.

    CAS  PubMed  Google Scholar 

  27. Kantarjian H, Ravandi F, Short NJ, Huang X, Jain N, Sasaki K, et al. Inotuzumab ozogamicin in combination with low intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19:240–8.

    CAS  PubMed  Google Scholar 

  28. Maury S, Huguet F, Leguay T, Lacombe F, Maynadié M, Girard S, et al. Adverse prognostic significance of CD20 expression in adults with Philadelphia chromosome negative B-cell precursor acute lymphoblastic leukemia. Haematologica. 2010;95:324–8.

    PubMed  Google Scholar 

  29. •• Maury S, Chevret S, Thomas X, et al. Rituximab in B-Lineage Adult Acute Lymphoblastic Leukaemia. N Engl J Med. 2016;375:1044–53 Phase 3 trial establishing the inclusion of rituximab with chemotherapy in the initial therapy of CD20-positive ALL as the standard of care.

    CAS  PubMed  Google Scholar 

  30. •• Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B cell Lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48 Pivotal phase II, multicentre trial showing efficacy and feasibility of delivery of CAR-T therapy to a multi-refractory cohort of children and young adults with R/R B-ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. • Park JH, Riviere I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59 A single-centre study showing the potential efficacy of CAR-T therapy in the adult population with R/R B-ALL.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Amrolia PJ, Wynn R, Hough RE, et al. Simultaneous targeting of CD19 and CD22: phase I study of AUTO3, a bicistronic chimeric antigen receptor (CAR) T-cell therapy targeting CD19 and CD22, in pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia (r/r B-ALL): Amelia study. Blood. 2018;132(S1):279.

    Google Scholar 

  33. Cohen A, Lee JW, Gelfand EW. Selective toxicity of deoxyguanosine and arabinosyl guanine for T-leukemic cells. Blood. 1983;61:660–6.

    CAS  PubMed  Google Scholar 

  34. DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood. 2007;109(12):5136–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Abaza Y, Kantarjian HM, Faderl S, et al. Hyper-CVAD plus nelarabine in newly diagnosed adult T-cell acute lymphoblastic leukaemia and T-lymphoblastic lymphoma. Am J Haematol. 2018;93:91–9.

    CAS  Google Scholar 

  36. Dunsmore KP, Winter S, Devidas M et al. COG AALL0434: a randomized trial testing nelarabine in newly diagnosed T-cell malignancy. J Clin Oncol 2018; 36,(suppl; abstr 10500).

  37. Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C, et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124:3420–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186(3):1840–8.

    PubMed  Google Scholar 

  39. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–19.

    CAS  PubMed  Google Scholar 

  40. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–66.

    CAS  PubMed  Google Scholar 

  41. Bras AE, Beishuizen A, Langerak AW, Jongen-Lavrencic M, te Marvelde JG, van den Heuvel-Eibrink M, et al. CD38 expression in paediatric leukaemia and lymphoma: implications for antibody targeted therapy. Br J Haematol. 2018;180(2):292–6.

    PubMed  Google Scholar 

  42. Moorman AV, Chilton L, Wilkinson J, Ensor HM, Bown N, Proctor SJ. A population based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010;115(2):206–14.

    CAS  PubMed  Google Scholar 

  43. Taylor PR, Reid MM, Bown N, Hamilton PJ, Proctor SJ. Acute lymphoblastic leukemia in patients aged 60 years and over: a population-based study of incidence and outcome. Blood. 1992;80(7):1813–7.

    CAS  PubMed  Google Scholar 

  44. Kantarjian HM, O'Brien S, Smith TL, et al. Results of treatment with hyper-CVAD, a dose-intensive regimen, in adult acute lymphocytic leukemia. J Clin Oncol. 2000;18(3):547–61.

    CAS  PubMed  Google Scholar 

  45. Sive JI, Buck G, Fielding AK, et al. Outcomes in older adults with acute lymphoblastic leukemia (ALL): results from the international MRC/ECOG trial. Br J Haematol. 2012;157(4):463–71.

    PubMed  PubMed Central  Google Scholar 

  46. Annino L, Goekbuget N, Delannoy A. Acute lymphoblastic leukemia in the elderly. Hematol J. 2002;3(5):219–23.

    PubMed  Google Scholar 

  47. Fielding AK, Rowe JM, Buck G, Foroni L, Gerrard G, Litzow MR, et al. UKALLXII/ ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, et al. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97.

    CAS  PubMed  Google Scholar 

  49. Riberra J-M, Garcia O, Montesinos P, et al. Treatment of young patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia using increased dose of imatinib and de-intensified chemotherapy before allogeneic stem cell transplantation. BJ Haematol. 2012;159(1):78–81.

    Google Scholar 

  50. • Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711–9 Phase 3 randomised trial showing the addition of imatinib can allow de-intensification of induction chemotherapy, with no change in induction responses and reduced induction mortality.

    CAS  PubMed  Google Scholar 

  51. Chiaretti S, Vitale A, Elia L et al. Multicenter total therapy GIMEMA LAL 1509 protocol for de novo adult Ph acute lymphoblastic leukemia (ALL) patients. Updated results and refined genetic-based prognostic stratification. Blood 2015; 126(23)(suppl).

  52. Rousselot P, Coudé MM, Gokbuget N, for the European Working Group on Adult ALL (EWALL) group. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128(6):774–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. • Cortes JE, Kim DW, Pinalla-Ibarz J, et al. A Phase 2 Trial of Ponatinib in Philadelphia Chromosome Positive Leukemias. N Engl J Med. 2013;369:1783–96 Phase 2 study confirming the activity and relative tolerability of ponatinib monotherapy in Ph+ALL, in patients previously shown to be resistant or intolerant to other TKIs.

    CAS  PubMed  Google Scholar 

  54. Jabbour E, Kantarjian H, Ravandi F, Thomas D, Huang X, Faderl S, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16(15):1547–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Siegel SE, Stock W, Johnson RH, et al. Pediatric-inspired treatment regimens for adolescents and young adults with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a review. JAMA Oncol. 2018;4(5):725–34.

    PubMed  PubMed Central  Google Scholar 

  56. Stock W, La M, Sanford B, et al. What determines the outcome for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s’ Cancer Group and Cancer and Leukemia Group B studies. Blood. 2008;112(5):1646–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. De Bont JM, Holt B, Dekker AW, et al. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia. 2004;18(12):2032–5.

    PubMed  Google Scholar 

  58. • Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALBG10403. Blood. 2019;133(14):1548–59 Phase 3 study confirming the efficacy and tolerability of a paediatric-style approach in adults aged up to 39.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. DeAngelo DJ, Stevenson KE, Dahlberg SE, et al. Long-term outcome of a pediatric inspired regimen used for adults aged 18-50 years with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2015;29(3):526–34.

    CAS  PubMed  Google Scholar 

  60. Huguet F, Chevret S, Leguay T, et al. Group of Research on aAdult ALL (GRALL). Intensified therapy of acute lymphoblastic leukemia in adults: reports of the randomized GRAALL-2005 clinical trial. J Clin Oncol. 2018;36(24):2514–23.

    CAS  PubMed  Google Scholar 

  61. Toft N, Birgens H, Abrahamsson J, Griškevičius L, Hallböök H, Heyman M, et al. Results of the NOPHO ALL2008 treatment for patients aged 1-45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–15.

    CAS  PubMed  Google Scholar 

  62. Bishop MR, Logan BR, Gandham S, Bolwell BJ, Cahn JY, Lazarus HM, et al. Long term outcomes of adults with acute lymphoblastic leukemia after autologous or unrelated donor bone marrow transplantation: a comparative analysis by the National Marrow Donor Program and Center for International Blood and Marrow Transplant Research. Bone Marrow Transplant. 2008;41(7):635–42.

    CAS  PubMed  Google Scholar 

  63. Marks DI, Perez WS, He W, et al. Unrelated donor transplants in adults with Philadelphia-negative acute lymphoblastic leukemia in first complete remission. Blood. 2008;112(2):426–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marks DI, Wang T, Perez WS, et al. The outcome of full-intensity and reduced intensity conditioning matched sibling or unrelated donor transplantation in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia in first and second complete remission. Blood. 2010;116(3):366–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Okasah D, Kirkwood A, Copland M et al. Fludarabine, Melphalan and alemtuzumab conditioning reduced intensity (RIC) allogeneic haematopoietic cell transplantation for adults aged >40 with de novo Acute lymphoblastic leukaemia: a prospective study from the UKALL14 Trial. Blood 2015; 126(23): 733 (Abstract). Early data from the first prospective trial of the RIC approach in adult ALL.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharine A. Hodby BMBCh, PhD.

Ethics declarations

Conflict of Interest

Katharine A. Hodby declares that she has no conflict of interest.

David I. Marks has received speaker’s honoraria from Pfizer, Amgen, and Novartis, and has participated on advisory boards for Pfizer and Novartis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Leukemia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodby, K.A., Marks, D.I. Recent Advances in the Management of Acute Lymphoblastic Leukaemia. Curr. Treat. Options in Oncol. 21, 23 (2020). https://doi.org/10.1007/s11864-020-0712-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-020-0712-8

Keywords

Navigation