Skip to main content
Log in

Entropy in the cusp and phase transitions for geodesic flows

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study the geodesic flow for a particular class of Riemannian non-compact manifolds with variable pinched negative sectional curvature. For a sequence of invariant measures we are able to prove results relating the loss of mass and bounds on the measure entropies. We compute the entropy contribution of the cusps. We develop and study the corresponding thermodynamic formalism. We obtain certain regularity results for the pressure of a class of potentials. We prove that the pressure is real analytic until it undergoes a phase transition, after which it becomes constant. Our techniques are based on the one hand on symbolic methods and Markov partitions, and on the other on geometric techniques and approximation properties at the level of groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. M. Abramov, On the entropy of a flow, Doklady Akademii Nauk SSSR 128 (1959), 873–875.

    MathSciNet  MATH  Google Scholar 

  2. W. Ambrose and S. Kakutani, Structure and continuity of measurable flows, Duke Mathematical Journal 9 (1942), 25–42.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. I. Bufetov and B. M. Gurevich, Existence and uniqueness of a measure with maximal entropy for the Teichmüller flow on the moduli space of abelian differentials, Rossiĭskaya Akademiya Nauk. Matematicheskiĭ Sbornik 202 (2011), 3–42.

    Article  MATH  Google Scholar 

  4. L. Barreira and G. Iommi, Suspension flows over countable Markov shifts, Journal of Statistical Physics 124 (2006), 207–230.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bowen, Symbolic dynamics for hyperbolic flows, American Journal of Mathematics 95 (1973), 429–460.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Inventiones Mathematicae 29 (1975), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Barreira, L. Radu and C. Wolf, Dimension of measures for suspension flows, Dynamical Systems 19 (2004), 89–107.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory and Dynamical Systems 23 (2003), 1383–1400.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. A. Bunimovich and Y. G. Sinaĭ, Markov partitions for dispersed billiards, Communications in Mathematical Physics 78 (1980/81), 247–280.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. A. Bunimovich and Y. G. Sinaĭ, Statistical properties of Lorentz gas with periodic configuration of scatterers, Communications in Mathematical Physics 78 (1980/81), 479–497.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Buzzi, Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps, Université de Grenoble. Annales de l’Institut Fourier 60 (2010), 801–852.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Coudene, Gibbs measures on negatively curved manifolds, Journal of Dynamical and Control Systems 9 (2003), 89–101.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Daon, Bernoullicity of equilibrium measures on countable Markov shifts, Discrete and Continuous Dynamical Systems 33 (2013), 4003–4015.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. J. Díaz, K. Gelfert and M. Rams, Rich phase transitions in step skew products, Nonlinearity 24 (2011), 3391–3412.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Dal’bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel Journal of Mathematics 118 (2000), 109–124.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Dal’bo and M. Peigné, Some negatively curved manifolds with cusps, mixing and counting, Journal für die Reine und Angewandte Mathematik 497 (1998), 141–169.

    MathSciNet  MATH  Google Scholar 

  17. N. Dobbs and M. Todd, Free energy jumps up, preprint, arXiv:1512.09245..

  18. M. Einsiedler, S. Kadyrov and A. Pohl, Escape of mass and entropy for diagonal flows in real rank one situations, Israel Journal of Mathematics 210 (2015), 245–295.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Einsiedler, E. Lindenstrauss, P. Michel and A. Venkatesh, The distribution of closed geodesics on the modular surface, and Duke’s theorem, Enseignement des Mathématiques 58 (2012), 249–313.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.-H. Fan, T. Jordan, L. Liao and M. Rams, Multifractal analysis for expanding interval maps with infinitely many branches, Transactions of the American Mathematical Society 367 (2015), 1847–1870.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. M. Gurevič, Topological entropy of a countable Markov chain, Soviet Mathematics. Doklady 10 (1969), 911–915.

    Google Scholar 

  22. U. Hamenstädt, Symbolic dynamics for the teichmüller flow, preprint, arXiv:1112.6107.

  23. E. Heintze and H.-C. Im Hof, Geometry of horospheres, Journal of Differential Geometry 12 (1977), 481–491 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Iommi and T. Jordan, Phase transitions for suspension flows, Communications in Mathematical Physics 320 (2013), 475–498.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Iommi, T. Jordan and M. Todd, Recurrence and transience for suspension flows, Israel Journal of Mathematics 209 (2015), 547–592.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Iommi and M. Todd, Natural equilibrium states for multimodal maps, Communications in Mathematical Physics 300 (2010), 65–94.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Iommi and M. Todd, Transience in dynamical systems, Ergodic Theory and Dynamical Systems 33 (2013), 1450–1476.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Jaerisch, M. Kesseböhmer and S. Lamei, Induced topological pressure for countable state Markov shifts, Stochastics and Dynamics 14 (2014), 1350016, 31 pp.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kempton, Thermodynamic formalism for suspension flows over countable Markov shifts, Nonlinearity 24 (2011), 2763–2775.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Kadyrov, D. Kleinbock, E. Lindenstrauss and G. A. Margulis, Singular systems of linear forms and non-escape of mass in the space of lattices, Journal d’Analayse Mathématique 133 (2017), 253–277.

    Article  MathSciNet  MATH  Google Scholar 

  31. R. D. Mauldin and M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, Vol. 148, Cambridge University Press, Cambridge, 2003.

  32. J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Mathematical Journal 125 (2004), 15–44.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. J. Patterson, The limit set of a Fuchsian group, Acta Mathematica 136 (1976), 241–273.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187/188 (1990).

    Google Scholar 

  35. F. Paulin, M. Pollicott and B. Schapira, Equilibrium states in negative curvature, Astérisque 373 (2015).

  36. F. Przytycki and J. Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Memoirs of the American Mathematical Society, to appear.

  37. M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel Journal of Mathematics 15 (1973), 92–114.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Riquelme and A. Velozo, Escape of mass and entropy for geodesic flows, Ergodic Theory and Dynamical Systems, to appear, arXiv:1610.04683.

  39. O. Sarig, Thermodynamic formalism for countable Markov shifts, Ergodic Theory and Dynamical Systems 19 (1999), 1565–1593.

    Article  MathSciNet  MATH  Google Scholar 

  40. O. Sarig, Phase transitions for countable Markov shifts, Communications in Mathematical Physics 217 (2001), 555–577.

    Article  MathSciNet  MATH  Google Scholar 

  41. O. Sarig, Existence of Gibbs measures for countable Markov shifts, Proceedings of the American Mathematical Society 131 (2003), 1751–1758.

    Article  MathSciNet  MATH  Google Scholar 

  42. O. Sarig, Thermodynamic formalism for countable Markov shifts, in Hyperbolic Dynamics, Fluctuations and Large Deviations, Proceedings of Symposia in Pure Mathematics, Vol. 89, American Mathematical Society, Providence, RI, 2015, pp. 81–117.

    Chapter  Google Scholar 

  43. S. V. Savchenko, Special flows constructed from countable topological Markov chains, Funktsional’nyĭ Analiz i ego Prilozheniya 32 (1998), 40–53, 96.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. G. Sinaĭ, Gibbs measures in ergodic theory, Akademija Nauk SSSR i Moskovskoe Matematičeskoe Obščestvo. Uspehi Matematičeskih Nauk 27 (1972), 21–64.

    MathSciNet  MATH  Google Scholar 

  45. D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Mathematica 153 (1984), 259–277.

    MATH  Google Scholar 

  46. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer-Verlag, New York–Berlin, 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godofredo Iommi.

Additional information

G.I. was partially supported by the Center of Dynamical Systems and Related Fields código ACT1103 and by Proyecto Fondecyt 1150058.

F.R. was supported by Programa de Cooperación Cient´ıfica Internacional CONICYT-CNRS código PCCI 14009 and partially supported by Programa Postdoctorado FONDECYT 3170049.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iommi, G., Riquelme, F. & Velozo, A. Entropy in the cusp and phase transitions for geodesic flows. Isr. J. Math. 225, 609–659 (2018). https://doi.org/10.1007/s11856-018-1670-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-018-1670-8

Navigation