Skip to main content
Log in

L p Christoffel functions, L p universality, and Paley-Wiener spaces

  • Published:
Journal d'Analyse Mathématique Aims and scope

Abstract

Let ω be a regular measure on the unit circle in ℂ, and let p > 0. We establish asymptotic behavior, as n→∞, for the L p Christoffel function

$${\lambda _{n,p}}(\omega ,z) = \mathop {\inf }\limits_{\deg (P) \leqslant n - 1} \frac{{\int_{ - \pi }^\pi {{{\left| {P({e^{i\theta }})} \right|}^p}dw(\theta )} }}{{{{\left| {P(z)} \right|}^p}}}$$

at Lebesgue points z on the unit circle in ℂ, where ω′ is lower semi-continuous. While bounds for these are classical, asymptotics have never been established for p ≠ 2. The limit involves an extremal problem in Paley-Wiener space. As a consequence, we deduce universality type limits for the extremal polynomials, which reduce to random-matrix limits involving the sinc kernel in the case p = 2. We also present analogous results for L p Christoffel functions on [−1, 1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Boas, Some uniformly convex spaces, Bull. Amer. Math. Soc. 46 (1940), 304–311.

    Article  MathSciNet  Google Scholar 

  2. R. P. Boas, Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  3. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.

    Article  MathSciNet  Google Scholar 

  4. C. Eoff, The discrete nature of the Paley-Wiener spaces, Proc. Amer. Math. Soc. 123 (1995), 505–512.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Freud, Orthogonal Polynomials, Akadémiai Kiadó/Pergamon Press, Budapest, 1971.

    Google Scholar 

  6. L. Golinskii, Akhiezer’s orthogonal polynomials and Bernstein-Szegő method for a circular arc, J. Approx. Theory, 95 (1998), 229–263.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Golinskii, D. S. Lubinsky, and P. Nevai, Large sieve estimates on arcs of a circle, J. Number Theory 91 (2001), 206–229.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 1979.

    Google Scholar 

  9. I. I. Ibragimov, Some inequalities for entire functions of exponential type, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 605–616.

    MATH  MathSciNet  Google Scholar 

  10. I. I. Ibragimov, Theory of Approximation by Entire Functions, Elm, Baku, 1979.

    MATH  Google Scholar 

  11. S. Ya. Khavinson, On an extremal problem of the theory of analytic functions, Uspehi Mat. Nauk 4 (1949), 158–159.

    Google Scholar 

  12. J. Korevaar, An inequality for entire functions of exponential type, Nieuw Arch. Wiskunde (2) 23 (1949), 55–62.

    MATH  MathSciNet  Google Scholar 

  13. A. Kroo, Unicity of complex polynomial L 1 approximation along curves, Proc. Amer. Math. Soc. 86 (1982), 427–432.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Ya. Levin, Lectures on Entire Functions, American Mathematical Society, Providence, 1996.

    MATH  Google Scholar 

  15. Eli Levin and D. S. Lubinsky, Orthogonal Polynomials for Exponential Weights, Springer, New York, 2001.

    Book  MATH  Google Scholar 

  16. Eli Levin and D. S. Lubinsky, Universality limits involving orthogonal polynomials on the unit circle, Comput. Methods Funct. Theory 2 (2007), 543–561.

    Article  MathSciNet  Google Scholar 

  17. D. S. Lubinsky, A new approach to universality limits involving orthogonal polynomials, Ann. of Math. (2) 170 (2009), 915–939.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. S. Lubinsky, A variational principle for correlation functions for unitary ensembles, with applications, Anal. PDE 6 (2013), 109–130.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. S. Lubinsky, A. Maté, and P. Nevai, Quadrature sums involving p th powers of polynomials, SIAM J. Math. Anal. 18 (1987), 531–544.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Maté, P. Nevai, and V. Totik, Szegő’s extremum problem on the unit circle, Ann. of Math. (2) 134 (1991), 433–453.

    Article  MATH  MathSciNet  Google Scholar 

  21. F. G. Nasibov, Notes about extremal functions in the space of entire functions of finite degree, Commun. Fac. Sci. Univ. Ankara Sér. A1 Math. Stat. 55 (2006) no. 2, 1–8.

    MATH  MathSciNet  Google Scholar 

  22. P. Nevai, Orthogonal Polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213.

  23. P. Nevai, Geza Freud, orthogonal polynomials and Christoffel functions. A case study, J. Approx. Theory 48 (1986), 3–167.

    Article  MATH  Google Scholar 

  24. M. Plancherel and G. Pólya, Fonctions entières et intégrales de Fourier multiples, Comment. Math. Helv. 10 (1937), 110–163.

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  26. B. Simon, Orthogonal Polynomials on the Unit Circle, Parts 1 and 2, American Mathematical Society, Providence, 2005.

    Google Scholar 

  27. B. Simon, Weak convergence of CD kernels and applications, Duke Math. J. 146 (2009), 305–330.

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Simon, Szegő’s Theorem and its Descendants, Princeton University Press, Princeton, NJ, 2011.

    Google Scholar 

  29. H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992.

    Book  MATH  Google Scholar 

  30. V. Totik, Asymptotics for Christoffel functions for general measures on the real line, J. Anal. Math. 81 (2000), 283–303.

    Article  MATH  MathSciNet  Google Scholar 

  31. V. Totik, Universality and fine zero spacing on general sets, Ark. Mat. 47 (2009), 361–391.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Zygmund, Trigonometric Series, Vols. I, II, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Levin.

Additional information

Research supported by NSF grant DMS1001182 and US-Israel BSF grant 2008399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, E., Lubinsky, D.S. L p Christoffel functions, L p universality, and Paley-Wiener spaces. JAMA 125, 243–283 (2015). https://doi.org/10.1007/s11854-015-0008-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11854-015-0008-2

Keywords

Navigation