Skip to main content
Log in

Enhancement of Biocompatibility of Fish Scale-Based Hydroxyapatite-Infused Fibrous Scaffolds by Low-Temperature Plasma

  • Biological Translation: Biological Materials Science and Bioinspired Design
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Owing to its excellent ability to enhance the cell growth and proliferation, hydroxyapatite (HAp) has received tremendous attention as a highly valuable biomaterials. Byproducts from the marine environment, especially fish scales, have proved to be a vital source for HAp. Nevertheless, HAp still has a profound influence on the matrices designed for biomedical applications. In this study, fish scale-derived nano-hydroxyapatite (n-HAp) = infused non-woven polycaprolactone (PCL) fibrous scaffolds are developed byforce spinning. The surface properties of the nanofibrous scaffolds are modified by oxygen plasma treatment, and their influence on n-HAP-infused PCL scaffolds is investigated. Plasma treatment is favorable for 2 wt.% and 3 wt.% scaffolds with a high O/C ratio and improving C=O content, and are found to have high cell growth. The 3 wt.% scaffolds have high crystallinity which is twice the crystallinity of neat fibers. The plasma treated 2 wt.% and 3 wt.% scaffolds were found to have high cell growth almost twice that of neat scaffolds, and these observations complied with the results from x-ray photoelectron spectroscopy (XPS). The plasma treatment enhances the functional properties and biocompatibility of fibrous scaffolds containing 2 and 3 wt.% n-HAP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Asadian, K.V. Chan, M. Norouzi, S. Grande, P. Cools, R. Morent, and N. De Geyter, Nanomaterials 10, 119 (2020).

    Google Scholar 

  2. A. Nahanmoghadam, M. Asemani, V. Goodarzi, and S. Ebrahimi-Barough, J. Biomed. Mater. Res. Part A 109, 981 (2021).

    Google Scholar 

  3. G. Chen and N. Kawazoe, in edited by J. M. Oliveira, S. Pina, R. L. Reis, and J. San Roman (Springer International Publishing, Cham, 2018), pp. 171–191.

  4. M. Hosseinkhani, D. Mehrabani, M.H. Karimfar, S. Bakhtiyari, A. Manafi, and R. Shirazi, World J. Plast. Surg. 3, 3 (2014).

    Google Scholar 

  5. A. Chlanda, P. Oberbek, M. Heljak, Ż Górecka, K. Czarnecka, K.S. Chen, and M.J. Woźniak, Surf. Coat. Technol. 375, 637 (2019).

    Google Scholar 

  6. N. Sultana and M. Wang, J. Mater. Sci. Mater. Med. 19, 2555 (2007).

    Google Scholar 

  7. D. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, and T. Friis, Mater. Sci. Eng. C 30, 78 (2010).

    Google Scholar 

  8. D.J. Mooney, D.F. Baldwin, N.P. Suh, J.P. Vacanti, and R. Langer, Biomaterials 17, 1417 (1996).

    Google Scholar 

  9. N. Thadavirul, P. Pavasant, and P. Supaphol, J. Biomed. Mater. Res. Part A 102, 3379 (2014).

    Google Scholar 

  10. O.A. Abdelaal and S.M. Darwish, J. World Acad. Sci. Eng. Technol. 59, 577 (2011).

    Google Scholar 

  11. S.N. Gorodzha, A.R. Muslimov, D.S. Syromotina, A.S. Timin, N.Y. Tcvetkov, K.V. Lepik, A.V. Petrova, M.A. Surmeneva, D.A. Gorin, G.B. Sukhorukov, and R.A. Surmenev, Colloids Surf. B Biointerfaces 160, 48 (2017).

    Google Scholar 

  12. T.A. Vida, A.C. Motta, A.R. Santos, G.B.C. Cardoso, C.C. De Brito, and C.A. De Carvalho Zavaglia, Mater. Res. 20, 910 (2017).

    Google Scholar 

  13. J.F. Kim, J.H. Kim, Y.M. Lee, and E. Drioli, AIChE J. 62, 461 (2016).

    Google Scholar 

  14. S. Zhang, Nat. Biotechnol. 21, 1171 (2003).

    Google Scholar 

  15. M. Cámara-Torres, R. Sinha, P. Scopece, T. Neubert, K. Lachmann, A. Patelli, C. Mota, L. Moroni, and A.C.S. Appl, Mater. Interfaces 13, 3631 (2021).

    Google Scholar 

  16. Q. Cheng, B.L.P. Lee, K. Komvopoulos, Z. Yan, and S. Li, Tissue Eng. Part A 19, 1188 (2013).

    Google Scholar 

  17. M. Rampichová, M. Buzgo, J. Chvojka, E. Prosecká, O. Kofronová, and E. Amler, Cell Adhes. Migr. 8, 36 (2014).

    Google Scholar 

  18. V. Padilla-Gainza, G. Morales, H. Rodríguez-Tobías, and K. Lozano, J. Appl. Polym. Sci. 136, 1 (2019).

    Google Scholar 

  19. Z. McEachin and K. Lozano, J. Appl. Polym. Sci. 126, 473 (2011).

    Google Scholar 

  20. K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. De Hoyos, H. Vasquez, and K. Lozano, Mater. Today 13, 12 (2010).

    Google Scholar 

  21. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, and S. Davaran, Artif. Cells Nanomed. Biotechnol. 45, 185 (2017).

    Google Scholar 

  22. K. Del Ángel-Sánchez, N.A. Ulloa-Castillo, E. Segura-Cárdenas, O. Martinez-Romero, and A. Eliás-Zuñiga, MRS Commun. 9, 390 (2019).

    Google Scholar 

  23. A.A. Ivanova, D.S. Syromotina, S.N. Shkarina, R. Shkarin, A. Cecilia, V. Weinhardt, T. Baumbach, M.S. Saveleva, D.A. Gorin, T.E.L. Douglas, B.V. Parakhonskiy, A.G. Skirtach, P. Cools, N. De Geyter, R. Morent, C. Oehr, M.A. Surmeneva, and R.A. Surmenev, RSC Adv. 8, 39106 (2018).

    Google Scholar 

  24. Z. Mohammed, S. Jeelani, and V. Rangari, JOM 72, 1523 (2020).

    Google Scholar 

  25. P. Chocholata, V. Kulda, and V. Babuska, Materials (Basel) 12, 568 (2019).

    Google Scholar 

  26. P. Palmero, Ceramic–polymer nanocomposites for bone-tissue regeneration, in Nanocomposites for Musculoskeletal Tissue Regeneration. (Elsevier, 2016), pp. 331–367. https://doi.org/10.1016/B978-1-78242-452-9.00015-7.

    Chapter  Google Scholar 

  27. C.I. Idumah, Polym. Polym. Compos. 29, 509 (2020).

    Google Scholar 

  28. N.G. Sahoo, Y.Z. Pan, L. Li, and C. Bin He, Nanomedicine 8, 639 (2013).

    Google Scholar 

  29. S. Park, J.E. Kim, J. Han, S. Jeong, J.W. Lim, M.C. Lee, H. Son, H.B. Kim, Y.H. Choung, H. Seonwoo, J.H. Chung, and K.J. Jang, Polymers (Basel) 13, 1 (2021).

    Google Scholar 

  30. R.M. Mohamed and K. Yusoh, Adv. Mater. Res. 1134, 249 (2016).

    Google Scholar 

  31. S. Sathiskumar, S. Vanaraj, D. Sabarinathan, S. Bharath, G. Sivarasan, S. Arulmani, K. Preethi, and V.K. Ponnusamy, Ceram. Int. 45, 7804 (2019).

    Google Scholar 

  32. N.A.S. Mohd Puad, R.H. Abdul Haq, H. Mohd Noh, H.Z. Abdullah, M.I. Idris, and T.C. Lee, Mater. Today Proc. 29, 218 (2019).

    Google Scholar 

  33. S. Mondal, G. Hoang, P. Manivasagan, M.S. Moorthy, H.H. Kim, T.T. Vy Phan, and J. Oh, Mater. Chem. Phys. 228, 344 (2019).

    Google Scholar 

  34. P. Surya, A. Nithin, A. Sundaramanickam, and M. Sathish, J. Mech. Behav. Biomed. Mater. 119, 104501 (2021).

    Google Scholar 

  35. M.R. Hasan, S.N. Mohd Yasin, M.S. Mohd Ghazali, and N.F. Mohtar, J. Sustain. Sci. Manag. 15, 9 (2020).

    Google Scholar 

  36. A. Pal, S. Maity, S. Chabri, S. Bera, A.R. Chowdhury, M. Das, and A. Sinha, Biomed. Phys. Eng. Express 3, 15010 (2017).

    Google Scholar 

  37. V. Hembrick-Holloman, T. Samuel, Z. Mohammed, S. Jeelani, and V.K. Rangari, J. Mater. Res. Technol. 9, 13729 (2020).

    Google Scholar 

  38. Y. Chai and M. Tagaya, Mater. Lett. 222, 156 (2018).

    Google Scholar 

  39. E. Barua, A.B. Deoghare, P. Deb, S. Das Lala, and S. Chatterjee, Mater. Today Proc. 15, 188 (2019).

    Google Scholar 

  40. D. Kodali, V. Hembrick-Holloman, and S. Jeelani, V. K. Rangari, in Plant Anim. Based Compos. ed. by K. Kumar, and J.P. Davim (De Gruyter, Berlin, Boston, 2021), pp. 127–148.

    Google Scholar 

  41. J. Sawai, Biocontrol Sci. 16, 95–102 (2011).

    Google Scholar 

  42. W.-K. Liu, B.-S. Liaw, H.-K. Chang, Y.-F. Wang, and P.-Y. Chen, JOM 69, 713 (2017).

    Google Scholar 

  43. S. Paul, A. Pal, A.R. Choudhury, S. Bodhak, V.K. Balla, A. Sinha, and M. Das, Ceram. Int. 43, 15678 (2017).

    Google Scholar 

  44. C.S. Wu, D.Y. Wu, S.S. Wang, and A.C.S. Appl, Bio Mater. 4, 462 (2021).

    Google Scholar 

  45. N.I. Agbeboh, I.O. Oladele, O.O. Daramola, A.A. Adediran, O.O. Olasukanmi, and M.O. Tanimola, Heliyon 6, e03765 (2020).

    Google Scholar 

  46. H. Yamamura, V.H.P. da Silva, P.L.M. Ruiz, V. Ussui, D.R.R. Lazar, A.C.M. Renno, and D.A. Ribeiro, J. Mech. Behav. Biomed. Mater. 80, 137 (2018).

    Google Scholar 

  47. P. Deb, A.B. Deoghare, E. Barua, and I.O.P. Conf, Ser. Mater. Sci. Eng. 377, 012009 (2018).

    Google Scholar 

  48. P. Deb, E. Barua, A.B. Deoghare, and S. Das Lala, Ceram. Int. 45, 10004 (2019).

    Google Scholar 

  49. N.P. Wijedasa, S.M. Broas, R.E. Daso, and I.A. Banerjee, Mater. Sci. Eng. C 109, 110540 (2020).

    Google Scholar 

  50. S. Jin, F. Sun, Q. Zou, J. Huang, Y. Zuo, Y. Li, S. Wang, L. Cheng, Y. Man, F. Yang, and J. Li, Biomacromolcules 20, 2058 (2019).

    Google Scholar 

  51. L. Li, Y. Zuo, Q. Zou, B. Yang, L. Lin, J. Li, Y. Li, and A.C.S. Appl, Mater. Interfaces 7, 22618 (2015).

    Google Scholar 

  52. S.Y. Heo, S.C. Ko, G.W. Oh, N. Kim, I.W. Choi, W.S. Park, and W.K. Jung, J. Biomed. Mater. Res. Part B Appl. Biomater. 107, 1937 (2019).

    Google Scholar 

  53. W. Pon-On, P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, and I.M. Tang, Mater. Lett. 221, 143 (2018).

    Google Scholar 

  54. B. Vandana, P. Syamala, D.S. Venugopal, S.R.K.I. Sk, B. Venkateswarlu, M. Jagannatham, M. Kolenčík, I. Ramakanth, R. Dumpala, and B.R. Sunil, Bull. Mater. Sci. 42, 122 (2019).

    Google Scholar 

  55. P.N. Sivasankaran and T.A. Ward, Aerosp. Sci. Technol. 49, 259 (2016).

    Google Scholar 

  56. H.S. Yoo, T.G. Kim, and T.G. Park, Adv. Drug Deliv. Rev. 61, 1033 (2009).

    Google Scholar 

  57. N. Recek, M. Resnik, H. Motaln, T. Lah-Turnšek, R. Augustine, N. Kalarikkal, S. Thomas, and M. Mozetič, Int. J. Polym. Sci. 2016, 1–9 (2016).

    Google Scholar 

  58. J. Venugopal, S. Low, A.T. Choon, A.B. Kumar, and S. Ramakrishna, J. Biomed. Mater. Res. Part A 85A, 408 (2008).

    Google Scholar 

  59. C.-M. Lee, S.-W. Yang, S.-C. Jung, and B.-H. Kim, J. Nanosci. Nanotechnol. 17, 2747 (2017).

    Google Scholar 

  60. D. Kodali, V. Hembrick-Holloman, D.R. Gunturu, T. Samuel, S. Jeelani, and V.K. Rangari, ACS Omega 7, 8323 (2022).

    Google Scholar 

  61. D. Kodali, F. Syed, S. Jeelani, and V.K. Rangari, Mater. Res. Express 7, 125402 (2020).

    Google Scholar 

  62. M.P. Prabhakaran, J. Venugopal, C.K. Chan, and S. Ramakrishna, Nanotechnology 19, 455102 (2008).

    Google Scholar 

  63. A.M. Pappa, V. Karagkiozaki, S. Krol, S. Kassavetis, D. Konstantinou, C. Pitsalidis, L. Tzounis, N. Pliatsikas, and S. Logothetidis, Beilstein J. Nanotechnol. 6, 254 (2015).

    Google Scholar 

  64. D. Xu, B. Liu, G. Zhang, S. Long, X. Wang, and J. Yang, High Perform. Polym. 28, 411 (2016).

    Google Scholar 

  65. B. Huang, G. Caetano, C. Vyas, J.J. Blaker, C. Diver, and P. Bártolo, Materials (Basel) 11, 129 (2018).

    Google Scholar 

  66. M. Sivan, D. Madheswaran, M. Asadian, P. Cools, M. Thukkaram, P. Van Der Voort, R. Morent, N. De Geyter, and D. Lukas, Surf. Coat. Technol. 399, 126203 (2020).

    Google Scholar 

  67. A. Esmail, J.R. Pereira, P. Zoio, S. Silvestre, U.D. Menda, C. Sevrin, C. Grandfils, E. Fortunato, M.A.M. Reis, C. Henriques, A. Oliva, and F. Freitas, Polymers (Basel). 13, 1 (2021).

    Google Scholar 

  68. V. Trakoolwannachai, P. Kheolamai, and S. Ummartyotin, Compos. Part B Eng. 173, 106974 (2019).

    Google Scholar 

  69. M.A. Taghavi, S.M. Rabiee, M. Jahanshahi, and F. Nasiri, Mol. Biotechnol. 61, 345 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from NSF-CREST #1735971, NSF-EPSCoR # 1655280, NSF-RISE # 1459007, NSF-MRI, #1531934 and grant #G12MD007585. The authors also acknowledge Dr. Paul Baker from University of Alabama in Birmingham for his support in XPS studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaya K. Rangari.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 509 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodali, D., Mohammed, Z., Gunturu, D.R. et al. Enhancement of Biocompatibility of Fish Scale-Based Hydroxyapatite-Infused Fibrous Scaffolds by Low-Temperature Plasma. JOM 75, 2174–2186 (2023). https://doi.org/10.1007/s11837-023-05750-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05750-5

Navigation