Skip to main content

Advertisement

Log in

Thermodynamic and Kinetic Studies for Intensifying Selective Decomposition of Zinc Ferrite

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel method to intensify the selective decomposition of zinc ferrite by a roasting process including reduction and magnetization stages was proposed. The relevant thermodynamic analysis with HSC [enthalpy (H), entropy (S) and heat capacity (C)] Chemistry 5.0 and experimental research on a laboratory scale were investigated. The thermodynamic calculations show that increasing the temperature and the CO amount promote not only the decomposition of zinc ferrite but also the formation of wustite, which can be converted to magnetite using sufficient CO2 at 823 K. The experimental results indicate that the zinc ferrite was decomposed into zinc oxide and wustite by reduction roasting under a gas mixture of 20% CO, 20% CO2 and 60% N2 at 1023 K for 90 min, and the decomposition degree of zinc ferrite reached 94%. Then, the generated wustite was transformed into magnetite by magnetization roasting under CO2 atmosphere at 823 K for 75 min, after which the selective extraction of zinc from zinc ferrite could be well achieved by low acid leaching. Increasing temperature and time were conducive to the magnetization within low temperature range, but when the temperature was above 823 K the zinc ferrite could be regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Wang, C. Srinivasakannan, X.H. Duan, J.H. Peng, D.J. Yang, and S.H. Ju, Sep. Purif. Technol. 115, 66 (2013).

    Article  Google Scholar 

  2. J.C. Balarini, L. de Oliveria Polli, T.L.S. Miranda, R.M.Z. de Castro, and A. Salum, Miner. Eng. 21, 100 (2008).

    Article  Google Scholar 

  3. C.A. Pickles, Sep. Purif. Technol. 59, 115 (2008).

    Article  Google Scholar 

  4. C.A. Pickles, J. Hazard. Mater. 166, 1030 (2009).

    Article  Google Scholar 

  5. M.S. Safarzadeh and D. Moradkhani, Sep. Purif. Technol. 73, 339 (2010).

    Article  Google Scholar 

  6. C.C. Wu, F.C. Chang, W.S. Chen, M.S. Tsai, and Y.N. Wang, J. Environ. Manage. 143, 208 (2014).

    Article  Google Scholar 

  7. C.A. Pickles, J. Hazard. Mater. 150, 265 (2008).

    Article  Google Scholar 

  8. C.A. Pickles, Miner. Eng. 22, 977 (2009).

    Article  Google Scholar 

  9. H.N. Zhang, J.L. Li, A.J. Xu, Q.X. Yang, D.F. He, and N.Y. Tian, J. Iron. Steel Res. Int. 21, 427 (2014).

    Article  Google Scholar 

  10. J. Antrekowitsch and H. Antrekowitsch, JOM 53, 26 (2001).

    Article  Google Scholar 

  11. J. He, M.T. Tang, Z.Q. Liu, S.H. Yang, and W.Y. Yao, J. Cent. South Univ. Technol. 10, 307 (2003).

    Article  Google Scholar 

  12. M.K. Jha, V. Kumar, and R. Singh, Resour. Conserv. Recycl. 33, 1 (2001).

    Article  Google Scholar 

  13. N. Leclerc, E. Meux, and J.M. Lecuire, Hydrometallurgy 70, 175 (2003).

    Article  Google Scholar 

  14. F.M. McCubbin, N.J. Tosca, A. Smirnov, H. Nekvasil, A. Steele, M. Fries, and D.H. Lindsley, Geochim. Cosmochim. Acta 73, 4907 (2009).

    Article  Google Scholar 

  15. R.A. Shawabkeh, Hydrometallurgy 104, 61 (2010).

    Article  Google Scholar 

  16. P. Holloway and T. Etsell, Miner. Process. Extr. Metall. 117, 137 (2008).

    Article  Google Scholar 

  17. P.C. Holloway, T.H. Etsell, and A.L. Murland, Metall. Mater. Trans. B 38, 781 (2007).

    Article  Google Scholar 

  18. P.C. Holloway, T.H. Etsell, and A.L. Murland, Metall. Mater. Trans. B 38, 793 (2007).

    Article  Google Scholar 

  19. M. Copur, T. Pekdemir, S. Colak, and A. Künkül, J. Hazard. Mater. 149, 303 (2007).

    Article  Google Scholar 

  20. Y. Zhang, X. Yu, and X. Li, Hydrometallurgy 109, 211 (2011).

    Article  Google Scholar 

  21. M.D. Turan, H.S. Altundoğan, and F. Tümen, Hydrometallurgy 75, 169 (2004).

    Article  Google Scholar 

  22. H. Yan, L.Y. Chai, B. Peng, M. Li, W. Liu, N. Peng, and D.K. Hou, JOM 65, 1589 (2013).

    Article  Google Scholar 

  23. J.W. Han, W. Liu, W.Q. Qin, B. Peng, K. Yang, and Y.X. Zheng, J. Ind. Eng. Chem. 22, 272 (2015).

    Article  Google Scholar 

  24. M. Li, B. Peng, L.Y. Chai, N. Peng, H. Yan, and D.K. Hou, J. Hazard. Mater. 237, 323 (2012).

    Article  Google Scholar 

  25. H. Yan, L.Y. Chai, B. Peng, M. Li, N. Peng, and D.K. Hou, Miner. Eng. 55, 103 (2014).

    Article  Google Scholar 

  26. W. Liu, J.W. Han, W.Q. Qin, L.Y. Chai, D.K. Hou, and Y. Kong, Can. Metall. Q. 53, 176 (2014).

    Article  Google Scholar 

  27. J.W. Han, W. Liu, W.Q. Qin, K. Yang, D.W. Wang, and H.L. Luo, Sep. Purif. Technol. 154, 263 (2015).

    Article  Google Scholar 

  28. J.W. Han, W. Liu, W.Q. Qin, B. Peng, K. Yang, and Y.X. Zheng, Chin. J. Nonferrous Met. 24, 511 (2014).

    Google Scholar 

  29. C.A. Pickles, J. Hazard. Mater. 179, 309 (2010).

    Article  Google Scholar 

  30. M. Gheisari, M. Mozaffari, M. Acet, and J. Amighian, J. Magn. Magn. Mater. 320, 2618 (2008).

    Article  Google Scholar 

  31. D.K. Hou, B. Peng, L.Y. Chai, N. Peng, and H. Yan, Chin. J. Nonferrous Met. 24, 2634 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Innovation Project for Postgraduates of Central South University (2015zzts090), Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources and National Natural Science Foundation of China (51204210) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Liu, W., Qin, W. et al. Thermodynamic and Kinetic Studies for Intensifying Selective Decomposition of Zinc Ferrite. JOM 68, 2543–2550 (2016). https://doi.org/10.1007/s11837-015-1807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1807-8

Keywords

Navigation