Skip to main content
Log in

High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Fossil fuels have historically represented two-thirds of all electricity generation in the United States and are projected to continue to play a similar role despite historically low projected growth rates in electricity demand and the recent dramatic shift from coal to more natural gas usage. Economic and environmental drivers will require more reliable and efficient fossil fuel generation systems in the future, likely with new system designs, higher operating temperatures, and more aggressive environments. Some of the current corrosion issues in power plants are reviewed along with research on materials solutions for systems envisioned for the near future, such as coal gasification and oxy-fired coal boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. http://www.eia.gov.

  2. E. Shuster, NETL presentation, 2012, www.netl.doe.gov/coal/refshelf/ncp.pdf.

  3. https://www.swepco.com/info/projects/TurkPlant.

  4. J.F. Henry, G. Zhou, and T. Ward, Mater. High Temp. 24, 249 (2007).

    Article  Google Scholar 

  5. S.C. Kung, Oxid. Met. 77, 289 (2012).

    Article  Google Scholar 

  6. S.R.J. Saunders and L.N. McCartney, Mater. Sci. Forum 522–523, 119 (2006).

    Article  Google Scholar 

  7. A.T. Fry and E.M. Piedra, Mater. High Temp. 28, 290 (2011).

    Article  Google Scholar 

  8. B.A. Pint, J.P. Shingledecker, and I.G. Wright (Paper presented at the International Conference on Advances in Condition and Remaining Life Assessment for Fossil Power Plants, Hilton Head, SC, October 2012).

  9. I.G. Wright, M. Schütze, P.F. Tortorelli, and R.B. Dooley, Mater. High Temp. 24, 265 (2007).

    Article  Google Scholar 

  10. I.G. Wright and R.B. Dooley, Mater. High Temp. 28, 40 (2011).

    Article  Google Scholar 

  11. K. Pantleon and M. Montgomery, Metall. Mater. Trans. A 43A, 1477 (2012).

    Article  Google Scholar 

  12. J.P. Shingledecker, B.A. Pint, A.S. Sabau, A.T. Fry, and I.G. Wright, Adv. Mater. Proc. 171, 23 (2013).

    Google Scholar 

  13. W.E. Ruther and S. Greenberg, J. Electrochem. Soc. 111, 1116 (1964).

    Article  Google Scholar 

  14. B.M. Tossey, H. Khan, and T. Andress (NACE Paper 11–186, presented at NACE Corrosion 2011, Houston, TX, March 2011).

  15. J.C. Rosser, M.I. Bass, C. Cooper, T. Lant, P.D. Brown, B.J. Connolly, and H.E. Evans, Mater. High Temp. 29, 95 (2012).

    Article  Google Scholar 

  16. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, J. Mater. Eng. Perf. 14, 281 (2005).

    Article  Google Scholar 

  17. R. Viswanathan, J. Shingledecker, and R. Purgert, Power 154, 41 (2010).

    Google Scholar 

  18. B. Bordenet, Mater. Corros. 59, 361 (2008).

    Article  Google Scholar 

  19. R. Viswanathan and W. Bakker, J. Mater. Eng. Perf. 10, 81 (2001).

    Article  Google Scholar 

  20. A.J.B. Cutler and E. Raask, Corros. Sci. 21, 789 (1981).

    Article  Google Scholar 

  21. D.B. Meadowcroft, Mater. Sci. Eng. 88, 313 (1987).

    Article  Google Scholar 

  22. L. Paul and G. Clark (Paper 05453, presented at NACE Corrosion 2005, Houston, TX, 2005).

  23. B.A. Pint and J.K. Thomson (NACE Paper 13-2171, presented at NACE Corrosion 2013, Orlando, FL, March 2013).

  24. L.A. Ruth, Mater. High Temp. 20, 7 (2003).

    Article  Google Scholar 

  25. L. M. Pike, Superalloys 2008, ed. R.C. Reed et al. (Warrendale, PA: TMS, 2008), pp. 191–200.

  26. S. Dryepondt, K.A. Unocic, and B.A. Pint, Mater. Corros. 63, 889 (2012).

    Google Scholar 

  27. G.C. Wood, I.G. Wright, T. Hodgkiess, and D.P. Whittle, Werk. Korr. 21, 900 (1970).

    Article  Google Scholar 

  28. I.G. Wright and R.B. Dooley, Int. Mater. Rev. 55, 129 (2010).

    Article  Google Scholar 

  29. E. Essuman, L.R. Walker, P.J. Maziasz, and B.A. Pint, Mater. Sci. Technol. 29, 822 (2013).

    Article  Google Scholar 

  30. A. Kranzmann, T. Neddemeyer, A.S. Ruhl, D. Huenert, D. Bettge, G. Oder, and R. Saliwan Neumann, Int. J. Greenhouse Gas Control 5S, S168 (2011).

    Article  Google Scholar 

  31. K. Natesan and J.H. Park, Int. J. Hydrogen Energy 32, 3689 (2007).

    Article  Google Scholar 

  32. W.J. Quadakkers, T. Olszewski, J. Piron-Abellan, V. Shemet, and L. Singheiser, Mater. Sci. Forum 696, 194 (2011).

    Article  Google Scholar 

  33. N. Mu, K.Y. Jung, N.M. Yanar, G.H. Meier, F.S. Pettit, and G.R. Holcomb, Oxid. Met. 78, 221 (2012).

    Article  Google Scholar 

  34. N.A.H. Holt, Mater. High Temp. 20, 1 (2003).

    Article  MathSciNet  Google Scholar 

  35. I.G. Wright and T.B. Gibbons, Int. J. Hydrogen Energy 32, 3610 (2007).

    Article  Google Scholar 

  36. F. Starr and C. Cormos, Mater. Res. Innov. 15, 428 (2011).

    Article  Google Scholar 

  37. G.W. Goward, Surf. Coat. Technol. 108–109, 73 (1998).

    Article  Google Scholar 

  38. J.R. Nicholls, MRS Bull. 28, 659 (2003).

    Article  Google Scholar 

  39. C. Leyens, K. Fritscher, R. Gehrling, M. Peters, and W.A. Kaysser, Surf. Coat. Technol. 82, 133 (1996).

    Article  Google Scholar 

  40. K. Onal, M.C. Maris-Sida, G.H. Meier, and F.S. Pettit, Mater. High Temp. 20, 327 (2003).

    Article  Google Scholar 

  41. J.L. Smialek, Mater. Sci. Forum 595–598, 191 (2008).

    Article  Google Scholar 

  42. B.A. Pint, J.A. Haynes, K.A. Unocic, and Y. Zhang, Superalloys 2012, ed. E. Huron et al. (Warrendale, PA: TMS, 2012), pp. 723–732.

  43. B.A. Pint and J.A. Haynes, Mater. Sci. Technol. 29, 828 (2013).

    Article  Google Scholar 

  44. J.A. Haynes, K.A. Unocic, and B.A. Pint, Surf. Coat. Technol. 215, 39 (2013).

    Article  Google Scholar 

  45. J. A. Haynes, K.A. Unocic, M.J. Lance, and B.A. Pint, Surf. Coat. Technol. Submitted for publication.

  46. H.E. Evans, Surf. Coat. Technol. 206, 1512 (2011).

    Article  Google Scholar 

  47. Y. Itoh, M. Saitoh, and M. Tamura, J. Eng. Gas Turb. Power 122, 43 (2000).

    Article  Google Scholar 

  48. R. Chacartegui, D. Sánchez, J.M. Muñoz de Escalona, B. Monje, and T. Sánchez, Fuel Process. Technol. 103, 97 (2012).

    Article  Google Scholar 

  49. W.P. Parks, E.E. Hoffman, W.Y. Lee, and I.G. Wright, J. Therm. Spray Technol. 6, 187 (1997).

    Article  Google Scholar 

  50. P.A. Hoffman, MRS Bull. 23, 4 (1998).

    Google Scholar 

  51. F.J.G. Carazas, C.H. Salazar, and G.F.M. Souza, Energy 36, 3855 (2011).

    Article  Google Scholar 

  52. K.K Coleman and B.G. Carson (Paper presented at the Boiler Tube & Heat Recovery Steam Generator Tube Failures and Inspections Conference, Baltimore, MD, April 2010).

  53. B.A. Pint and Y. Zhang, Mater. Corros. 62, 549 (2011).

    Article  Google Scholar 

  54. B.A. Pint, J.R. DiStefano, and I.G. Wright, Mater. Sci. Eng. 415, 255 (2006).

    Article  Google Scholar 

  55. R.L. Klueh, N.D. Evans, P.J. Maziasz, and V. Sikka, Int. J. Pressure Vessel Piping 84, 29 (2007).

    Article  Google Scholar 

  56. B.A. Pint, K.A. Unocic, S. Dryepondt, P.J. Maziasz, and M.L. Santella (Paper presented at the Proc. 2nd International Conference on Welding and Fabrication Technology for New Power Plants and Components, Orlando, FL, June 2011).

  57. P.J. Maziasz and B.A. Pint, J. Eng. Gas Turbines Power 133, 092102 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The research shown was sponsored by the Electric Power Research Institute (EPRI) and the U.S. Department of Energy, Office of Fossil Energy, Advanced Research Materials Program and the Office of Coal and Power R&D. The author is grateful from insights gained from discussions with I.G. Wright, R. Klueh, and P.J. Maziasz at ORNL; V. Cedro, R. Dennis, and B. White at NETL; J. Shingledecker at EPRI; B. Nagaraj at General Electric; A. Kulkarni at Siemens; and S. Sampath at Stonybrook University. The author is thankful also for the assistance of S. Dryepondt, J. Thomson, G. Garner, T. Lowe, H. Longmire, and T. Jordan with the experimental work at ORNL. P.F. Tortorelli and M.P. Brady at ORNL provided helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A. High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future. JOM 65, 1024–1032 (2013). https://doi.org/10.1007/s11837-013-0642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0642-z

Keywords

Navigation