Skip to main content

Advertisement

Log in

Extensive Review on the Role of Machine Learning for Multifactorial Genetic Disorders Prediction

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The culture of employing machine learning driven assistance and decision making is currently adopted by a variety of industries. Artificial intelligence encompasses a wide range of learning technologies, including machine learning. One of the most significant and advantageous industries is the medical and health care field. In the field of healthcare, machine learning is currently begin implemented in practically every facet, including clinical research, early-stage disease identification, medication discovery, and virtual support. The prediction and identification of complex disease as soon as possible is one of the main aspects that is currently using data driven approaches and which shows that machine learning is playing a vital role by helping to make a real time difference in the effort to save human lives. Even though disease prediction and detection can be valuable and is one of the most crucial roles that machine learning adaptation plays in the health industry, doing so can be difficult and requires a significant amount of effort due to the complexity and behavior of diseases. Because they stem from a combination of environmental variables and anomalies in many genes, multifactorial inherited genetic disorders are the hardest to predict and diagnose. By presenting a brief explanation on characterizations, stages, and basic concepts about ten well-known disease that fall within the category of multi-factorial genetic condition, this comprehensive research review discusses the current trends on adopting various machine learning approaches on Heart diseases, Alzheimer, Obesity, Diabetes and Blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamet P, Tremblay J (2017) Artificial intelligence in medicine. Metabolism 69:S36–S40. https://doi.org/10.1016/J.METABOL.2017.01.011

    Article  CAS  Google Scholar 

  2. Ting S-H, Ng Y-J, Neelam M (2022) Neelam MahaLakshmi (2021) Aspects of artificial intelligence. p 65. https://www.researchgate.net/publication/358119068. Accessed 12 Jun 2022

  3. Potentiaco.com (2021) What is machine learning: definition, types, applications and examples—potentia analytics. https://www.potentiaco.com/what-is-machine-learning-definition-types-applications-and-examples/. Accessed 5 Jun 2022

  4. Naqa IE, Murphy MJ (2015) What is machine learning? Mach Learn Radiat Oncol. https://doi.org/10.1007/978-3-319-18305-3_1

    Article  Google Scholar 

  5. Wikipedia (2012) Disease—Wikipedia 2012. https://en.m.wikipedia.org/wiki/Disease. Accessed 5 Jun 2022

  6. Stoppler MC (2022) 18 common genetic disorders: 4 types, symptoms, causes & human genome. https://www.medicinenet.com/genetic_disease/article.htm. Accessed 5 Jun 2022

  7. Naqa IE, Murphy MJ (2015) Machine learning in radiation oncology. Mach Learn Radiat Oncol. https://doi.org/10.1007/978-3-319-18305-3

    Article  Google Scholar 

  8. Rayan Z, Alfonse M, Salem AM (2019) ScienceDirect ScienceDirect ScienceDirect machine learning approaches in smart health machine approaches in smart health on the learning innovation of protecting intangible cultural heritage in the " internet plus " era. Procedia Comput Sci 154(1985):361–368. https://doi.org/10.1016/j.procs.2019.06.052

    Article  Google Scholar 

  9. Bhardwaj R (2017) A study of machine learning in healthcare. In: 2017 IEEE 41st annual computer software and applications conference (COMPSAC), vol 2. IEEE, pp. 236–241. https://doi.org/10.1109/COMPSAC.2017.164

  10. Ramprasad R, Mueller T, Kusne AG (2016) Machine learning in materials science: recent progress and emerging applications. Rev Comput Chem 29:186–273

    Google Scholar 

  11. Alsharef A, Sonia A, Aggarwal K (2021) Predicting time-series data using linear and deep learning models—an experimental study. In: Lecture notes in electrical engineering, vol 907, pp 505–516

  12. Alsharef A, Sonia A, Kumar K, Iwendi C (2022) Time series data modeling using advanced machine learning and AutoML. Sustainability 14:15292. https://doi.org/10.3390/su142215292

    Article  Google Scholar 

  13. Schmidt J (2019) Recent advances and applications of machine learning in solid- state materials science. NPJ Comput Mater. https://doi.org/10.1038/s41524-019-0221-0

    Article  Google Scholar 

  14. Brownlee J (2016) Supervised and unsupervised machine learning algorithms. Machine Learning Mastery Pty, Ltd, Victoria

    Google Scholar 

  15. Brownlee J (2019) Supervised and unsupervised machine learning algorithms. Machine Learning Mastery Pty Ltd, Victoria, pp 1–9

  16. Loukas S (2020) What is machine learning supervised, unsupervised, semi-supervised and reinforcement learning methods. Towards Data Science

  17. van Engelen JE, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109(2):373–440. https://doi.org/10.1007/S10994-019-05855-6/FIGURES/5

    Article  MathSciNet  Google Scholar 

  18. Hady MFA, Schwenker F (2013) Semi-supervised learning. Intell Syst Ref Libr 49:215–239. https://doi.org/10.1007/978-3-642-36657-4_7/COVER

    Article  Google Scholar 

  19. Morgan C (2010) Algorithms for reinforcement learning. Springer, New York. https://doi.org/10.2200/S00268ED1V01Y201005AIM009

    Article  Google Scholar 

  20. Baheti P (2021) A simple guide to data preprocessing in machine learning. V7Labs, London

  21. Sharma J, Arora M, Alsharef A (2022) An illustrative study on multi criteria decision making approach: analytical hierarchy process. In: 2022 2nd international conference on advance computing and innovative technologies in engineering (ICACITE), pp 2000–2005. https://doi.org/10.1109/ICACITE53722.2022.9823864

  22. Alsharef SA, Jain P, Arora M, Zahra SR, Gupta G (2021) Cache memory: an analysis on performance issues. In: 2021 8th international conference on computing for sustainable global development (INDIACom), pp 184–188

  23. Ahmadi F, Baglat P, Thakur P (2021) Multi-factor biometric authentication approach for fog computing to ensure security perspective. In: 2021 8th international conference on computing for sustainable global development (INDIACom), pp 172–176

  24. Lupulescu A, Flowers T, Vermillion L, Henry S (2015) ASM micrograph database™. Metallogr Microstruct Anal 4(4):322–327. https://doi.org/10.1007/s13632-015-0212-6

    Article  Google Scholar 

  25. Blum AL, Langley P (1997) Artificial intelligence selection of relevant features and examples in machine. Artif Intell 97(1–2):245–271

    Article  Google Scholar 

  26. Nargesian F, Samulowitz H, Khurana U, Khalil EB, Turaga D (2017) Learning feature engineering for classification. In: IJCAI international joint conference on artificial intelligence. https://doi.org/10.24963/ijcai.2017/352

  27. Brown R (2019) What are features in machine learning and why it is important? Medium

  28. Uddin MF, Lee J, Rizvi S, Hamada S (2018) Proposing enhanced feature engineering and a selection model for machine learning processes. Appl Sci (Switzerland). https://doi.org/10.3390/app8040646

    Article  Google Scholar 

  29. Patel H (2021) What is feature engineering—importance, tools and techniques for machine learning | by Harshil Patel | Towards Data Science

  30. Altexsoft (2017) Preparing your dataset for machine learning: 8 steps | AltexSoft

  31. Regression in Machine Learning. Towards Data Science

  32. Maulud DH, Abdulazeez AM (2020) A review on linear regression comprehensive in machine learning. J Appl Sci Technol Trends 1(4):140–147

    Article  Google Scholar 

  33. Madhulatha TS (2012) An overview on clustering methods. Comput Sci 2(4):719–725

    Google Scholar 

  34. Mehta R, Aggarwal K, Koundal D, Alhudaif A, Polat K (2021) Markov features based DTCWS algorithm for online image forgery detection using ensemble classifier in the pandemic. Expert Syst Appl 185:115630. https://doi.org/10.1016/j.eswa.2021.115630”

    Article  Google Scholar 

  35. Ede JM, Lo L, Amador VK, Li S (2018) Machine learning from theory to algorithms: an overview machine learning from theory to algorithms: an overview. J Phys. https://doi.org/10.1088/1742-6596/1142/1/012012

    Article  Google Scholar 

  36. Aggarwal K, Bhamrah MS, Ryait HS (2016) Modification of LBP for detecting liver cirrhosis from b-mode ultrasound image. In: 2015 2nd international conference on recent advances in engineering and computational sciences, RAECS 2015. https://doi.org/10.1109/RAECS.2015.7453313

  37. Siradjuddin I (2018) Machine learning linear regression. ResearchGate 1–7

  38. DeMaris A, Selman SH (2013) Converting data into evidence. In: A statistics primer for the medical practitioner. Springer, New York. https://doi.org/10.1007/978-1-4614-7792-1

  39. Mood C (2010) Logistic regression: why we cannot do what we think we can do, and what we can do about it. Eur Sociol Rev 26(1):67–82. https://doi.org/10.1093/esr/jcp006

    Article  Google Scholar 

  40. Aggarwal K, Bhamrah MS, Ryait HS (2019) Detection of cirrhosis through ultrasound imaging by intensity difference technique. Eurasip J Image Video Process. https://doi.org/10.1186/s13640-019-0482-z

    Article  Google Scholar 

  41. Cai J, Chu X, Xu K, Li H, Wei J (2020) Machine learning-driven new material discovery. Nanoscale Adv. https://doi.org/10.1039/d0na00388c

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mesevage TG (2020) Top machine learning algorithms explained: how do they work? MonkeyLearn

  43. Jiang L, Cai Z, Wang D, Jiang S (2007) Survey of improving k-nearest-neighbor for classification. In: Fourth international conference on fuzzy systems and knowledge discovery (FSKD 2007), vol 1. IEEE

  44. Sharma A (2021) Decision tree algorithm for classification : machine learning 101. Anal Vidhya 943

  45. Priyam A, Gupta R, Rathee A, Srivastava S (2013) Comparative analysis of decision tree classification algorithms. Int J Curr Eng Technol 3(2):334–337

    Google Scholar 

  46. Zhang D, Zhou Z, Chen S (2007) Semi-supervised dimensionality reduction. SIAM Data Mining. https://doi.org/10.1137/1.9781611972771.73

  47. Ray S (2017) Commonly used machine learning algorithms | data science. Analyticsvidhya

  48. Zou J, Han Y, So SS (2008) Overview of artificial neural networks. Methods Mol Biol 458:15–23. https://doi.org/10.1007/978-1-60327-101-1_2

    Article  PubMed  Google Scholar 

  49. IBM Cloud Education (2020) What are neural networks? IBM

  50. Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26(2):195–197. https://doi.org/10.1038/nbt1386

    Article  CAS  PubMed  Google Scholar 

  51. Islam M, Chen G, Jin S (2019) An overview of neural network. Am J Neural Netw Appl 5(1):7. https://doi.org/10.11648/j.ajnna.20190501.12

    Article  Google Scholar 

  52. Schmidt RM (2019) Recurrent neural networks (RNNs): a gentle introduction and overview. arXiv:1912.05911

  53. Nelson CR (2009) Chapter 1: an overview of economics. Macroeconomics 2009:1–17

    Google Scholar 

  54. Kim J, Kang D, Kim S, Jang HW (2021) Catalyze materials science with machine learning. ACS Mater Lett 3(8):1151–1171. https://doi.org/10.1021/acsmaterialslett.1c00204

    Article  CAS  Google Scholar 

  55. “What is Model Training | Oden Technologies.” Towards Data Science

  56. Sydorenko I (2021) Machine learning & training data: sources, methods, things to keep in mind

  57. Park NH (2022) Genetic disorders. Clinical medicine for physician assistants, 2022. https://www.genome.gov/For-Patients-and-Families/Genetic-Disorders. Accessed 7 Jun 2022

  58. Soomro NI, Qureshi NA, Bakhtiar SM (2022) Precision medicine for multifactorial disorders precision medicine and multifactorial diseases view project probiotic biopolymeric based coating to control food borne pathogens view project, 2018. https://www.researchgate.net/publication/345032061. Accessed 11 Jun 2022

  59. Multifactorial Inheritance and Birth Defects | Children’s Hospital of Philadelphia, 2022. https://www.chop.edu/conditions-diseases/multifactorial-inheritance-and-birth-defects. Accessed 11 Jun 2022

  60. Multifactorial Disorders or Complex Traits—The Health of Canada’s Children and Youth, 2022. https://cichprofile.ca/module/2/section/2/page/multifactorial-disorders-or-complex-traits/. Accessed 11 Jun 2022

  61. Duarte CW, Vaughan LK, Beasley TM, Tiwari HK (2013) Multifactorial inheritance and complex diseases emery and Rimoin’s principles and practice of medical. Genetics. https://doi.org/10.1016/b978-0-12-383834-6.00014-8

    Article  Google Scholar 

  62. Bick D, Bick SL, Dimmock DP, Fowler TA, Caulfield MJ, Scott RH (2021) An online compendium of treatable genetic disorders. Am J Med Genet C 187(1):48–54. https://doi.org/10.1002/ajmg.c.31874

    Article  Google Scholar 

  63. Jackson M, Marks L, May GHW, Wilson JB (2018) The genetic basis of disease. Essays Biochem 62(5):643–723. https://doi.org/10.1042/EBC20170053

    Article  PubMed  PubMed Central  Google Scholar 

  64. Keane MG, Pyeritz RE (2008) Medical management of marfan syndrome. Circulation 117(21):2802–2813. https://doi.org/10.1161/CIRCULATIONAHA.107.693523

    Article  PubMed  Google Scholar 

  65. Lvovs D, Favorova OO, Favorov AV (2012) A polygenic approach to the study of polygenic diseases. Acta Nat 4(3):59–71. https://doi.org/10.32607/20758251-2012-4-3-59-71

    Article  CAS  Google Scholar 

  66. Kumar P, Radhakrishnan J, Chowdhary MA, Giampietro PF (2001) Prevalence and patterns of presentation of genetic disorders in a pediatric emergency department. Mayo Clin Proc 76(8):777–783. https://doi.org/10.4065/76.8.777

    Article  CAS  PubMed  Google Scholar 

  67. Korf BR, Sathienkijkanchai A (2009) Introduction to human genetics. Clin Transl Sci. https://doi.org/10.1016/B978-0-12-373639-0.00019-4

    Article  Google Scholar 

  68. Yahaya L, Oye ND, Garba EJ (2020) A comprehensive review on heart disease prediction using data mining and machine learning techniques. Am J Artif Intell 4(1):20. https://doi.org/10.11648/j.ajai.20200401.12

    Article  Google Scholar 

  69. Mohan S, Thirumalai C, Srivastava G (2019) Effective heart disease prediction using hybrid machine learning techniques. IEEE Access 7:81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707

    Article  Google Scholar 

  70. Cardiovascular Diseases (2022) https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1. Accessed 11 Jun 2022

  71. Cardiovascular Diseases (2022) Bulletin of the Pan American Health Organization, 1984. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed 11 2022

  72. El-Hajj C, Kyriacou PA (2020) A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed Signal Process Control 58:101870. https://doi.org/10.1016/j.bspc.2020.101870

    Article  Google Scholar 

  73. Hypertension (2022) https://www.who.int/health-topics/hypertension#tab=tab_1. Accessed 11 2022

  74. Baglat P, Salehi AW, Gupta A, Gupta G (2020) Multiple machine learning models for detection of Alzheimer’s disease using OASIS dataset. IFIP advances in information and communication technology. Springer, New York, pp 614–622

    Google Scholar 

  75. Knopman DS et al (2021) Alzheimer disease. Nat Rev Dis Primers 7(1):1–21. https://doi.org/10.1038/s41572-021-00269-y

    Article  Google Scholar 

  76. Alzheimer’s Association (2020) What is dementia? Symptoms, causes & treatment | alz.org. Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/what-is-dementia. Accessed 11 Jun 2022

  77. Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia. Accessed 11 Jun 2022

  78. Cancer. https://www.who.int/health-topics/cancer#tab=tab_1. Accessed 11 Jun 2022

  79. Sarwar N et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  80. Hasan MK, Alam MA, Das D, Hossain E, Hasan M (2020) Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8:76516–76531. https://doi.org/10.1109/ACCESS.2020.2989857

    Article  Google Scholar 

  81. Diabetes (2022). https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 11 2022

  82. Forouhi NG, Wareham NJ (2010) Epidemiology of diabetes. Medicine 38(11):602–606. https://doi.org/10.1016/j.mpmed.2010.08.007

    Article  Google Scholar 

  83. U.S. Department of Health & Human Services (2019) Arthritis types | CDC. Centers for disease control and prevention, national center for chronic disease prevention and health promotion, division of population health, 2019. https://www.cdc.gov/arthritis/basics/types.html. Accessed 11 Jun 2022

  84. Arthritis and Rheumatic Diseases & Conditions | NIAMS. https://www.niams.nih.gov/health-topics/arthritis-and-rheumatic-diseases. Accessed 11 Jun 2022

  85. Tao W et al (2021) Multiomics and machine learning accurately predict clinical response to adalimumab and etanercept therapy in patients with rheumatoid arthritis. Arthritis Rheumatol 73(2):212–222. https://doi.org/10.1002/art.41516

    Article  CAS  PubMed  Google Scholar 

  86. Dunstan J, Aguirre M, Bastías M, Nau C, Glass TA, Tobar F (2020) Predicting nationwide obesity from food sales using machine learning. Health Inform J 26(1):652–663. https://doi.org/10.1177/1460458219845959

    Article  Google Scholar 

  87. Chooi YC, Ding C, Magkos F (2019) The epidemiology of obesity. Metabolism 92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  88. Obesity (2022). https://www.who.int/health-topics/obesity#tab=tab_1. Accessed 11 Jun 2022

  89. Obesity and overweight. SpringerReference, 2012. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 11 Jun 2022

  90. Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatr 7:246. https://doi.org/10.3389/fped.2019.00246

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stern J, Pier J, Litonjua AA (2020) Asthma epidemiology and risk factors. Semin Immunopathol 42(1):5–15. https://doi.org/10.1007/s00281-020-00785-1

    Article  PubMed  Google Scholar 

  92. Hammad H, Lambrecht BN (2021) The basic immunology of asthma. Cell 184(6):1469–1485. https://doi.org/10.1016/J.CELL.2021.02.016

    Article  CAS  PubMed  Google Scholar 

  93. Asthma. https://www.who.int/news-room/fact-sheets/detail/asthma. Accessed 11 Jun 2022

  94. Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: opportunities and challenges. Neurocomputing 237:350–361. https://doi.org/10.1016/j.neucom.2017.01.026

    Article  Google Scholar 

  95. Jordan MI, Mitchell TM (2015) Machine learning: Trends, perspectives, and prospects. Science (1979) 349(6245):255–260. https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  CAS  Google Scholar 

  96. Tajjour S, Garg S, Chandel SS, Sharma D (2023) A novel hybrid artificial neural network technique for the early skin cancer diagnosis using color space conversions of original images. Int J Imaging Syst Technol 33(1):276–286

    Article  Google Scholar 

  97. Arora M, Bhardwaj I (2022) The emergence of sustainability adoption in the healthcare sector during COVID-19. In: Goar V, Kuri M, Kumar R, Senjyu T (eds) Advances in information communication technology and computing lecture notes in networks and systems, vol 392. Springer, Singapore

    Google Scholar 

  98. Salehi AW, Gupta G, Sonia (2021) A prospective and comparative study of machine and deep learning techniques for smart healthcare applications. Mobile Health 100:163–189

    Google Scholar 

  99. You J, McLeod RD, Hu P (2019) Predicting drug-target interaction network using deep learning model. Comput Biol Chem 80:90–101. https://doi.org/10.1016/J.COMPBIOLCHEM.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  100. Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A (2016) Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm 13(7):2524–2530. https://doi.org/10.1021/ACS.MOLPHARMACEUT.6B00248/ASSET/IMAGES/LARGE/MP-2016-00248Z_0003.JPEG

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep26094

    Article  CAS  Google Scholar 

  102. Rajkomar A et al (2018) Scalable and accurate deep learning with electronic health records. NPJ Digit Med 1(1):1–10. https://doi.org/10.1038/s41746-018-0029-1

    Article  Google Scholar 

  103. Zeng Z, Deng Y, Li X, Naumann T, Luo Y (2019) Natural language processing for EHR-based computational phenotyping. IEEE/ACM Trans Comput Biol Bioinform 16(1):139–153. https://doi.org/10.1109/TCBB.2018.2849968

    Article  PubMed  Google Scholar 

  104. Laranjo L et al (2018) Conversational agents in healthcare: a systematic review. J Am Med Inform Assoc 25(9):1248–1258. https://doi.org/10.1093/JAMIA/OCY072

    Article  PubMed  PubMed Central  Google Scholar 

  105. Choi E, Bahadori MT, Schuetz A, Stewart WF, Sun J (2016) Doctor AI: predicting clinical events via recurrent neural networks. JMLR Workshop Conf Proc 56:301

    PubMed  PubMed Central  Google Scholar 

  106. Esteva A et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/NATURE21056

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  107. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/NECO.1997.9.8.1735

    Article  CAS  PubMed  Google Scholar 

  108. Ting DSW et al (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223. https://doi.org/10.1001/JAMA.2017.18152

    Article  PubMed  PubMed Central  Google Scholar 

  109. Shatte ABR, Hutchinson DM, Teague SJ (2019) Machine learning in mental health: a scoping review of methods and applications. Psychol Med 49(9):1426–1448. https://doi.org/10.1017/S0033291719000151

    Article  PubMed  Google Scholar 

  110. McKinney SM et al (2020) Addendum: international evaluation of an AI system for breast cancer screening. Nature 586(7829):E19. https://doi.org/10.1038/S41586-020-2679-9

    Article  CAS  PubMed  Google Scholar 

  111. Litjens G et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/J.MEDIA.2017.07.005

    Article  PubMed  Google Scholar 

  112. Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed 19:221–248. https://doi.org/10.1146/ANNUREV-BIOENG-071516-044442

    Article  CAS  Google Scholar 

  113. Ahsan MM, Siddique Z (2022) Machine learning-based heart disease diagnosis: a systematic literature review. Artif Intell Med 128:102289. https://doi.org/10.1016/J.ARTMED.2022.102289

    Article  PubMed  Google Scholar 

  114. Elhoseny M et al (2021) A new multi-agent feature wrapper machine learning approach for heart disease diagnosis. Comput Mater Contin. https://doi.org/10.32604/cmc.2021.012632

    Article  Google Scholar 

  115. Rani P, Kumar R, Ahmed NMOS, Jain A (2021) A decision support system for heart disease prediction based upon machine learning. J Reliab Intell Environ 7(3):263–275. https://doi.org/10.1007/S40860-021-00133-6

    Article  Google Scholar 

  116. Kavitha M, Gnaneswar G, Dinesh R, Sai YR, Suraj RS (2021) Heart disease prediction using hybrid machine learning model. In: Proceedings of the 6th international conference on inventive computation technologies, ICICT 2021. Institute of Electrical and Electronics Engineers Inc. pp 1329–1333. https://doi.org/10.1109/ICICT50816.2021.9358597

  117. Rong M, Li K (2021) A blood pressure prediction method based on imaging photoplethysmography in combination with machine learning. Biomed Signal Process Control 64:102328. https://doi.org/10.1016/j.bspc.2020.102328

    Article  Google Scholar 

  118. Zheng J, Yu Z (2021) A novel machine learning-based systolic blood pressure predicting model. J Nanomater. https://doi.org/10.1155/2021/9934998

    Article  Google Scholar 

  119. Baek S, Jang J, Yoon S (2019) End-to-end blood pressure prediction via fully convolutional networks. IEEE Access 7:185458–185468. https://doi.org/10.1109/ACCESS.2019.2960844

    Article  Google Scholar 

  120. Jaiswal V, Negi A, Pal T (2021) A review on current advances in machine learning based diabetes prediction. Prim Care Diabetes 15(3):435–443. https://doi.org/10.1016/j.pcd.2021.02.005

    Article  PubMed  Google Scholar 

  121. Mirshahvalad R, Zanjani NA (2018) Diabetes prediction using ensemble perceptron algorithm. In: Proceedings—9th international conference on computational intelligence and communication networks, CICN 2017, vol. 2018, pp 190–194. https://doi.org/10.1109/CICN.2017.8319383

  122. Rajesh K, Sangeetha V (2008) Application of data mining methods and techniques for diabetes diagnosis. Certif Int J Eng Innov Technol 9001(3):2277–3754

    Google Scholar 

  123. Soliman OS, AboElhamd E (2014) Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine. Int J Comput Trends Technol. http://www.ijcttjournal.org

  124. Nirmaladevi M, Balamurugan SAA, Swathi UV (2013) An amalgam KNN to predict diabetes mellitus. In: 2013 IEEE international conference on emerging trends in computing, communication and nanotechnology, ICE-CCN 2013, pp 691–695. https://doi.org/10.1109/ICE-CCN.2013.6528591

  125. Kumar S, Oh I, Schindler S, Lai AM, Payne PRO, Gupta A (2021) Machine learning for modeling the progression of Alzheimer disease dementia using clinical data: a systematic literature review. JAMIA Open. https://doi.org/10.1093/jamiaopen/ooab052

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sudharsan M, Thailambal G (2021) Alzheimer’s disease prediction using machine learning techniques and principal component analysis (PCA). Mater Today Proc. https://doi.org/10.1016/J.MATPR.2021.03.061

    Article  Google Scholar 

  127. Ferdowsy F, Rahi KSA, Jabiullah MI, Habib MT (2021) A machine learning approach for obesity risk prediction. Curr Res Behav Sci. https://doi.org/10.1016/j.crbeha.2021.100053

    Article  Google Scholar 

  128. Garg S, Pundir P (2021) MOFit: a framework to reduce obesity using machine learning and IoT. In: 2021 44th international convention on information, communication and electronic technology, MIPRO 2021—Proceedings, pp 1733–1740. https://doi.org/10.23919/MIPRO52101.2021.9596673

  129. Pang X, Forrest CB, Lê-Scherban F, Masino AJ (2021) Prediction of early childhood obesity with machine learning and electronic health record data. Int J Med Inform 150:104454. https://doi.org/10.1016/j.ijmedinf.2021.104454

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding involved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonia or Karan Kumar.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solomon, D.D., Sonia, Kumar, K. et al. Extensive Review on the Role of Machine Learning for Multifactorial Genetic Disorders Prediction. Arch Computat Methods Eng 31, 623–640 (2024). https://doi.org/10.1007/s11831-023-09996-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09996-9

Navigation