Skip to main content
Log in

Regulation of cuticular wax biosynthesis in plants under abiotic stress

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Cuticular waxes are the covering of the outer layer of the plant, consist of hydrocarbon appears like whitish film or bloom in plant organs. They play a vital role like a safeguard from different stress condition in the plant. Since environmental factors are active regulators of cuticular wax biosynthesis, composition, quantity, and deposition, it is evident that cuticular wax is associated with plant stress responses. The diversity of cuticular wax compositions is a proof of the wealth of genes associated in plant wax production. Moreover, a number of wax genes were distinguished in plant/crops at abiotic stress conditions but, regulation of control of those wax genes has not been studied very well in major crop plants at abiotic conditions. A very few transcriptions factors were identified to regulate the expression level of wax genes of cuticular wax biosynthesis at abiotic stress condition. However, further study is needed to identify more candidate transcriptional regulation factors to cuticular wax production in different crop plants in diverse abiotic environments. Therefore, regulation of cuticular wax production under diverse abiotic stresses and the role of transcription factors into the plant cuticular wax accumulation will be helpful to engineer crop plants and improve transgenic crops for stress tolerance. In this review, we focused on a new perspective on transcriptional factors to regulate functional genes of cuticular wax biosynthesis in plants at abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Tafolla-Arellano et al. 2018; with permission from Elsevier)

Fig. 2

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domai transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahuja I, De Vos RCH, Bones AM, Hall RD (2017) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avato P, Mikkelsen JD, von Wettstein-Knowles P (1982) Synthesis of epicuticular primary alcohols and intracellular fatty acids by tissue slices from cer-j59 barley leaves. Carlsberg Res Commun 47:377–390

    CAS  Google Scholar 

  • Avato P, Bianchi G, Nayak A, Salamini F, Gentinetta E (1987) Epicuticular waxes of maize as affected by the interaction of mutantgl8 withgl3, gl4 andgl15. Lipids 22(1):11–16

    CAS  PubMed  Google Scholar 

  • Baker EA (1974) The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol 73:955–966

    CAS  Google Scholar 

  • Baldoni E, Genga A, Cominelli E (2015) Plant MYB transcription factors: their role in drought response mechanisms. Int J Mol Sci 16:15811–15851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bao SG, Shi JX, Luo F, Ding B, Hao JY, Xie XD, Sun SJ (2017) Overexpression of Sorghum WINL1 gene confers drought tolerance in Arabidopsis thaliana through the regulation of cuticular biosynthesis. Plant Cell Tiss Organ Cult 128:347–356

    CAS  Google Scholar 

  • Bernard A, Joube`s J (2013) Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res 52:110–129

    CAS  PubMed  Google Scholar 

  • Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera M, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67:5363–5380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540

    CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    CAS  PubMed  Google Scholar 

  • Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179

    CAS  Google Scholar 

  • Buxdorf K, Rubinsky G, Barda O, Burdman S, Aharoni A, Levy M (2014) The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol Biol 84:37–47

    CAS  PubMed  Google Scholar 

  • Cameron KD, Teece MA, Smart LB (2006) Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol 140:176–183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Guang C, Dai F, Wang Y, Hills A, Ruan YL, Zhang G, Franks PJ, Nevo E, Blatt MR (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139

    CAS  PubMed  Google Scholar 

  • Delarosaibarra M, Maiti RK (1995) Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. J Plant Physiol 146:515–519

    CAS  Google Scholar 

  • Djemal R, Khoudi H (2016) TdSHN1, a WIN1/SHN1-type transcription factor, imparts multiple abiotic stress tolerance in transgenic tobacco. Environ Exp Bot 131:89–100

    CAS  Google Scholar 

  • Dodd RS, Poveda MM (2003) Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol 31:1257–1270

    CAS  Google Scholar 

  • Duan Y, He JX (2011) Distribution and isotopic composition of n-alkanes from grass, reed and tree leaves along a latitudinal gradient in China. Geochem J 45:199–207

    CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepeniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Google Scholar 

  • Febrero A, Fernández S, Molina-Canoand JL, Araus JL (1998) Yield, carbon isotope discrimination, canopy reflectance and cuticular conductance of barley isolines of differing glaucousness. J Exp Bot 49:1575–1581

    CAS  Google Scholar 

  • Frei ER, Ghazoul J, Matter P, Heggli M, Pluess AR (2014) Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Glob Change Biol 20:441–455

    Google Scholar 

  • Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    CAS  PubMed  Google Scholar 

  • Fukuda S, Satoh A, Kasahara H, Matsuyama H, Takeuchi Y (2008) Effects of ultraviolet-B irradiation on the cuticular wax of cucumber (Cucumis sativus) cotyledons. J Plant Res 121:179–189

    CAS  PubMed  Google Scholar 

  • Go YS, Kim H, Kim HJ, Suh MC (2014) Arabidopsis cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell 26:1666–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez R, Paul ND, Percy K, Ambrose M, McLaughlin CK, Barnes JD, Areses M, Wellburn AR (1996) Responses to ultraviolet-B radiation (280–315nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol Plant 98:852–860

    CAS  Google Scholar 

  • González A, Ayerbe L (2010) Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172:341–349

    Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Guo N, He Y, Gao J (2015) Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau. Ecol Evolution 5:3954–3968

    Google Scholar 

  • Guo J, Xu W, Yu X, Shen H, Li H, Cheng D, Liu A, Liu J, Liu C, Zhao S, Song J (2016) Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci 7:1809

    PubMed  PubMed Central  Google Scholar 

  • Halinski ŁP, Paszkiewicz M, Biowski MG, Stepnowski P (2012) The chemical composition of cuticular waxes from leaves of the gboma eggplant (Solanum macrocarpon L.). J Food Compos Anal 25:74–78

    CAS  Google Scholar 

  • Halinski ŁP, Kalkowska M, Kalkowski M, Piorunowska J, Topolewska A, Stepnowski P (2015) Cuticular wax variation in the tomato (Solanum lycopersicum L.) related wild species and their interspecific hybrids. Biochem Syst Ecol 60:215–224

    CAS  Google Scholar 

  • Hao S, Ma Y, Zhao S, Ji Q, Zhang K, Yang M, Yao Y (2017) McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature. PLoS ONE 12(10):e0186996

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Texira da Silva JA, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • He J, Tang S, Yang D, Chen Y, Ling L, Zou Y, Zhou M, Xu X (2019) Chemical and transcriptomic analysis of cuticle lipids under cold stress in Thellungiella salsuginea. Int J Mol Sci 20:4519

    CAS  PubMed Central  Google Scholar 

  • Hunsche M, Bu’’rling K, Saied AS, Schmitz-Eiberger M, Sohail M, Gebauer J, Noga G, Buerkert A (2010) Effects of NaCl on surface properties, chlorophyll fluorescence and light remission, and cellular compounds of Grewia tenax (Forssk.) Fiori and Tamarindus indica L. leaves. Plant Growth Regul 61:253–263

    CAS  Google Scholar 

  • Isaacson T, Kosma DK, Matas AJ, Buda GJ, He Y, Yu B, Pravitasari A, Batteas JD, Stark RE, Jenks MA, Rose JKC (2009) Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant J 60:363–377

    CAS  PubMed  Google Scholar 

  • Javelle M, Vernoud V, Depege-Fargeix N, Arnould C (2010) Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol 154:273–286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DA, Richards RA, Turner NC (1983) Yield, water relations, gas exchange, and surface reflectances of near-isogenic wheat lines differing in glaucousness. Crop Sci 23:318–325

    Google Scholar 

  • Jordan WR, Shouse PJ, Blum A, Miller FR, Monk RL (1984) Environmental physiology of sorghum. II. epicuticular wax load and cuticular transpiration. Crop Sci 24:1168–1173

    Google Scholar 

  • Kakani VG, Reddy KR, Zhao D, Mohammed AR (2003) Effects of ultraviolet-B radiation on cotton (Gossypium hirsutum L.) morphology and anatomy. Ann Bot 91:817–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kartini K, Azminah M (2012) Chromatographic fingerprinting and clustering of Plantago major l from different areas in Indonesia. Asian J Pharm Clin Res 5:191–195

    Google Scholar 

  • Kim KS, Park SH, Jenks MA (2007) Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol 164:1134–1143

    CAS  PubMed  Google Scholar 

  • Kim H, Go YS, Suh MC (2018) DEWAX2 Transcription factor negatively regulates cuticular wax biosynthesis in Arabidopsis leaves. Plant Cell Physiol 59:966–977

    CAS  PubMed  Google Scholar 

  • Kim RJ, Kim HU, Suh MC (2019) Development of Camelina enhanced with drought stress resistance and seed oil production by co-overexpression of MYB96A and DGAT1C. Ind Crop Prod 138:111475

    CAS  Google Scholar 

  • Koch K, Hartmann KD, Schreiber L, Barthlott W, Neinhuis C (2006) Influences of air humidity during the cultivation of plants on wax chemical composition, morphology, and leaf surface wettability. Environ Exp Bot 56:1–9

    CAS  Google Scholar 

  • Kosma DK, Bourdenx B, Bernard A, Parsons E (2009) The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol 151:1918–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosma DK, Parsons EP, Isaacson T, Lü S, Rose JK, Jenks MA (2010) Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol Plant 139:107–117

    CAS  PubMed  Google Scholar 

  • Laila R, Robin AH, Yang K, Park JI, Suh MC, Kim J, Nou IS (2017) Developmental and genotypic variation in leaf wax content and composition, and in expression of wax biosynthetic genes in Brassica oleracea var. capitata. Front Plant Sci 7:1972

    PubMed  PubMed Central  Google Scholar 

  • Lee SB, Suh MC (2014) Cuticular wax biosynthesis is up-regulated by the MYB94 transcription factor in Arabidopsis. Plant Cell Physiol 56:48–60

    PubMed  Google Scholar 

  • Lee SB, Suh MC (2015) Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34:557–572

    CAS  PubMed  Google Scholar 

  • Lee SB, Kim H, Kim RJ, Suh MC (2014) Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Plant Cell Rep 33:1535–1546

    CAS  PubMed  Google Scholar 

  • Lee J, Yang K, Lee M, Kim S, Kim J, Lim S, Kang G-H, Min SR, Kim S-J, Park SU, Jang YS, Lim SS, Kim H (2015) Differentiated cuticular wax content and expression patterns of cuticular wax biosynthetic genes in bloomed and bloomless broccoli (Brassica oleracea var. italica). Process Biochem 50(3):456–462

    CAS  Google Scholar 

  • Lee SB, Kim HU, Suh MC (2016) MYB94 and MYB96 additively active cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol 57:2300–2311

    CAS  PubMed  Google Scholar 

  • Li S, Wang X, He S, Li J, Huang Q, Imaizumi T, Qu L, Qin G, Qu LJ, Gu H (2016) CFLAP1 and CFLAP2 are two bHLH transcription factors participating in synergistic regulation of AtCFL1-mediated cuticle development in Arabidopsis. PLoS Genet 12:e1005744

    PubMed  PubMed Central  Google Scholar 

  • Li H, Guo Y, Cui Q, Zhang Z, Yan X, Ahammed GJ, Yang X, Yang J, Wei C, Zhang X (2020) Alkanes (C29 and C31)-Mediated intracuticular wax accumulation contributes to melatonin- and aba-induced drought tolerance in watermelon. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10099-z

    Article  Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson FX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-Lipid metabolism Arabidopsis Book 11:e0161

    PubMed  Google Scholar 

  • Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7:e36406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majada J, Sierra M, Sanchez-Tames R (2001) Air exchange rate affects the in vitro developed leaf cuticle of carnation. Sci Hortic 87:121–130

    Google Scholar 

  • Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F, Guo X, Liu X, Wu C, Wang H, Wan J (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39–52

    CAS  PubMed  Google Scholar 

  • Monneveux P, Reynolds MP, González-Santoyo H, Peña RJ, Mayr L, Zapata F (2004) Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J Agron Crop Sci 190:395–401

    Google Scholar 

  • Nadakuduti SS, Pollard M, Kosma DK, Allen C, Ohlrogge JB, Barry CS (2012) Pleiotropic phenotypes of the sticky peel mutant provide new insight into the role of CUTIN DEFICIENT2 in epidermal cell function in tomato. Plant Physiol 159:945–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrath C, Schreiber L, Franke RB, Geldner N, Reina-Pinto JJ, Kunst L (2013) Apoplastic diffusion barriers in Arabidopsis. Arabidopsis Book 11:e0167

    PubMed  PubMed Central  Google Scholar 

  • Ni Y, Xia RE, Li JN (2014a) Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant 36:2481–2490

    CAS  Google Scholar 

  • Ni Y, Song C, Wang X (2014b) Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin 47:252–261

    CAS  Google Scholar 

  • Oshima Y, Shikata M, Koyama T, Ohtsubo N, Mitsuda N, Ohme-Takagi M (2013) MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell 25:1609–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CS, Go YS, Suh MC (2016) Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF-type transcription factor, in Arabidopsis stems. Plant J 88:257–270

    CAS  PubMed  Google Scholar 

  • Pu YY, Gao J, Guo YL, Liu T, Zhu L, Xu P, Yi B, Wen J, Tu J, Ma C, Fu T, Zou J, Shen J (2013) A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. BMC Plant Biol 13:215

    PubMed  PubMed Central  Google Scholar 

  • Qaderi M, Reid DM (2005) Growth and physiological responses of canola (Brassica napus) to UV-B and CO2 under controlled environment conditions. Physiol Plant 125:247–259

    CAS  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 5:1569–1582

    Google Scholar 

  • Racovita RC, Hen-Avivi S, Fernandez-Moreno JP, Granel A, Aharoni A, Jetter R (2016) Composition of cuticular waxes coating flag leaf blades and peduncles of Triticum aestivum cv. Bethlehem Photochemistry 130:182–219

    CAS  Google Scholar 

  • Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razeq FM, Kosma DK, Rowland O, Molina I (2014) Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces. Phytochemistry 106:188–196

    CAS  PubMed  Google Scholar 

  • Richards RA, Rawson HM, Johnson DA (1986) Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures. Funct Plant Biol 13:465–473

    Google Scholar 

  • Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33:439–448

    CAS  Google Scholar 

  • Seo PJ, Park CM (2011) Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6:1043–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh MC, Park M-J, Go YS, Park CM (2011) The MYB96 Transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaheenuzzamn M, Liu T, Shi S, Wu H, Wang Z (2019) Research advances on cuticular waxes biosynthesis in crops: A review. Intl J Agric Biol 2:911–921

    Google Scholar 

  • Shao H, Chu L, Jaleel C, Zhao C (2008) Water-deficit stress-induced anatomical changes in higher plants. CR Biol 331:215–225

    Google Scholar 

  • Shepherd T, Griffths DW (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499

    CAS  PubMed  Google Scholar 

  • Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, Matas AJ, Meir S, Malitsky S, Isaacson T, Prusky D, Leshkowitz D, Schreiber L, Granell AR, Widemann E, Grausem B, Pinot F, Rose JKC, Rogachev I, Rothan C, Aharoni A (2013) The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol 197:468–480

    CAS  PubMed  Google Scholar 

  • Smirnova A, Leide J, Riederer M (2013) Deficiency in a very-long-chain fatty acid β-ketoacyl-CoA synthase (SlCER6) of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol 161:196–209

    CAS  PubMed  Google Scholar 

  • Steinmüller D, Tevini M (1985) Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta 164:557–656

    PubMed  Google Scholar 

  • Szafranek BM, Synak EE (2006) Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67:80–90

    CAS  PubMed  Google Scholar 

  • Tafolla-Arellano JC, Báez-Sañudo R, Tiznado-Hernández ME (2018) The cuticle as a key factor in the quality of horticultural crops. Sci Hortic 232:145–152

    Google Scholar 

  • Tassone EE, Lipka AE, Tomasi P, Lohrey GT, Qian W, Dyer JM, Gore MA, Jenks MA (2016) Chemical variation for leaf cuticular waxes and their levels revealed in a diverse panel of Brassica napus L. Ind Crop Prod 79:77–83

    CAS  Google Scholar 

  • Tomasi P, Wang H, Lohrey GT, Park S, Dyer JM, Jenks MA, Abdel-Haleem H (2017) Characterization of leaf cuticular waxes and cutin monomers of Camelina sativa and closely-related Camelina species. Ind Crop Prod 98:130–138

    CAS  Google Scholar 

  • von Wettstein-Knowles P (1971) The molecular phenotypes of the eceriferum mutants. In: Nilan RA (ed) Barley genetics II. Washington State University Press, Pulman, pp 146–193

    Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Guo PY, Z, (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    CAS  PubMed  Google Scholar 

  • Wang Z, Guhling O, Yao R, Li F, Yeats TH, Rose JKC, Jetter R (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol 155:540–552

    CAS  PubMed  Google Scholar 

  • Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    CAS  PubMed  Google Scholar 

  • Wang W, Liu X, Gai X, Ren J, Liu X, Cai Y, Wang Q, Ren H (2015a) Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses. Plant Cell Physiol 56:1339–1354

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang J, Chai G, Li C, Hu Y, Chen X, Wang Z (2015b) Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat (Triticum aestivum L.). PLoS ONE 10:e0141239

    PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang Y, Wu H, Xu J, Li T, Hegebarth D, Jetter R, Chen L, Wang Z (2016) Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum. Sci Rep 6:25008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wu H, Xu J, Li C, Wang Y, Wang Z (2017) Five fatty acyl-coenzyme a reductases are involved in the biosynthesis of primary alcohols in Aegilops tauschii leaves. Front Plant Sci 8:1012

    PubMed  PubMed Central  Google Scholar 

  • Wu R, Li S, He S, Waβmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H (2011) CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23:3392–3411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wu H, Zhao M, Wu W, Xu Y, Gu D (2016) Overexpression of the transcription factors gmshn1 and gmshn9 differentially regulates wax and cutin biosynthesis, alters cuticle properties, and changes leaf phenotypes in arabidopsis. Int J Mol Sci 17:587

    PubMed Central  Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen ZH (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yang M, Yang Q, Fu T, Zhou Y (2011) Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep 30:373–388

    CAS  PubMed  Google Scholar 

  • Yang C, Ma S, Lee I, Kim J, Liu S (2015) Saline-induced changes of epicuticular waxy layer on the Puccinellia tenuiflora and Oryza sativa leave surfaces. Biol Res 48(1):33

    PubMed  PubMed Central  Google Scholar 

  • Yang SU, Kim H, Kim RJ, Kim J, Suh MC (2020) AP2/DREB Transcription factor RAP2.4 activates cuticular wax biosynthesis in Arabidopsis leaves under drought. Front Plant Sci 11:895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu N, Chao S, Xiao-qing W (2014) Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin 47:252–261

    Google Scholar 

  • Yu N, Sun Z, Huang X, Huang C, Guo Y (2015) Variations of cuticular wax in mulberry trees and their effects on gas exchange and post-harvest water loss. Acta Physiol Plant 37:112

    Google Scholar 

  • Yu H, Zhang Y, Xie Y, Wang Y, Duan L, Zhang M, Li Z (2017) Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. J Plant Physiol 214:123–133

    CAS  PubMed  Google Scholar 

  • Zhang Y, Togamura Y, Otsuki K (2004) Study on the n-alkane patterns in some grasses and factors affecting the n-alkane patterns. J Agric Sci 142:469–475

    CAS  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J 42:689–707

    CAS  PubMed  Google Scholar 

  • Zhang JY, Broeckling CD, Sumner LW, Wang ZY (2007) Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol 64:265–278

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wang W, Li W (2013) Genetic interactions underlying the biosynthesis and inhibition of beta-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS ONE 8:e54129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wei W, Zhu H, Challa GS, Bi C, Trick HN, Li W (2015) W3 is a new wax locus that is essential for biosynthesis of β-diketone, development of glaucousness, and reduction of cuticle permeability in common wheat. PLoS ONE 10:e0140524

    PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, Zhao Q, You CX, Li YY, Hao YJ (2019a) The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biol 19:362

    PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Zhang CL, Wang GL, Wang YX, Qi CH, You CX, Li YY, Hao YJ (2019b) Apple AP2/EREBP transcription factor MdSHINE2 confers drought resistance by regulating wax biosynthesis. Planta 249:1627–1643

    CAS  PubMed  Google Scholar 

  • Zhao Y, Cheng X, Liu X, Wu H, Bi H, Xu H (2018) The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in arabidopsis. Front Plant Sci 9:1426

    PubMed  PubMed Central  Google Scholar 

  • Zhou LY, Ni ED, Yang JW, Zhou H, Liang H, Li J, Jiang D, Wang Z, Liu Z, Zhuang C (2013) Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS ONE 8:e65139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jenks M, Liu J, Liu A, Zhang X, Xiang J, Zou J, Peng Y, Chen X (2014) Overexpression of transcription factor OsWR2 regulates wax and cutin biosynthesis in rice and enhances its tolerance to water deficit. Plant Mol Biol Rep 32:719–731

    CAS  Google Scholar 

  • Zhu X, Xiong L (2013) Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc Natl Acad Sci USA 110:17790–17795

    CAS  PubMed  Google Scholar 

  • Zhu L, Guo J, Zhu J, Zhou C (2014) Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol Biochem 75:24–35

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS and ZW outlined the review. MS, SS, KS, HW, TL. PA and MH collected the literature and wrote the manuscript draft. M.H. edited the manuscript and prepared the figures. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mirza Hasanuzzaman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheenuzzamn, M., Shi, S., Sohail, K. et al. Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnol Rep 15, 1–12 (2021). https://doi.org/10.1007/s11816-020-00656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-020-00656-z

Keywords

Navigation