Skip to main content
Log in

Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ru/κ-Al2O3 catalysts with different Ru dispersions were prepared by controlling the pretreatment conditions, and were applied to selective CO oxidation in H2. The prepared catalysts were characterized by N2 physisorption, transmission electron microscopy, temperature-programmed oxidation, CO chemisorption, and O2 chemisorption. The Ru dispersion decreased with increasing reduction and oxidation temperature of Ru/κ-Al2O3. The turnover frequency for CO oxidation in H2 increased as the Ru particle size increased from 2.2 to 3.6 nm, whereas the apparent activation energy decreased as the Ru particle size increased from 2.2 to 3.4 nm for 1% Ru/κ-Al2O3. However, larger Ru particles were not always favorable for the selective CO oxidation in H2 because H2 oxidation was also promoted by these catalysts. In the case of the 1 wt% Ru/κ-Al2O3 catalyst, Ru nanoparticles of approximately 3 nm appeared to be optimal for the selective CO oxidation in H2 on the basis that they provided the widest temperature window, resulting in complete removal of CO even in the presence of H2O and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Song, Catal. Today, 77, 17 (2002).

    Article  CAS  Google Scholar 

  2. E. D. Park, D. Lee and H. C. Lee, Catal. Today, 139, 280 (2009).

    Article  CAS  Google Scholar 

  3. K. Liu, A. Wang and T. Zhang, ACS Catal., 2, 1165 (2012).

    Article  CAS  Google Scholar 

  4. G. Avgouropoulos, T. Ioannides and H. Matralis, Appl. Catal. B: Environ., 56, 87 (2005).

    Article  CAS  Google Scholar 

  5. B. Qiao, A. Wang, J. Lin, L. Li, D. Su and T. Zhang, Appl. Catal. B: Environ., 105, 103 (2011).

    Article  CAS  Google Scholar 

  6. Z. K. Zhao, R. H. Jin, T. Bao, X. L. Lin and G. R. Wang, Appl. Catal. B: Environ., 110, 154 (2011).

    Article  CAS  Google Scholar 

  7. Q. Zhang, X. Liu, W. Fan and Y. Wang, Appl. Catal. B: Environ., 102, 207 (2011).

    Article  CAS  Google Scholar 

  8. J. E. Park and E. D. Park, Catal. Lett., 144, 607 (2014).

    Article  CAS  Google Scholar 

  9. E.-Y. Ko, E. D. Park, K.W. Seo, H. C. Lee, D. Lee and S. Kim, Catal. Today, 116, 377 (2006).

    Article  CAS  Google Scholar 

  10. S. H. Oh and R. M. Sinkevitch, J. Catal., 142, 254 (1993).

    Article  CAS  Google Scholar 

  11. Y. H. Kim, E. D. Park, H. C. Lee, D. Lee and K. H. Lee, Catal. Today, 146, 253 (2009).

    Article  CAS  Google Scholar 

  12. G. Xu and Z.-G. Zhang, J. Power Sources, 157, 64 (2006).

    Article  CAS  Google Scholar 

  13. A. Worner, C. Friedrich and R. Tamme, Appl. Catal. A: Gen., 245, 1 (2003).

    Article  CAS  Google Scholar 

  14. S. Y. Chin, O. S. Alexeev and M. D. Amiridis, Appl. Catal. A: Gen., 286, 157 (2005).

    Article  CAS  Google Scholar 

  15. M. Echigo and T. Tabata, Appl. Catal. A: Gen., 251, 157 (2003).

    Article  CAS  Google Scholar 

  16. Y.-F. Han, M. Kinne and R. J. Behm, Appl. Catal. B: Environ., 52, 123 (2004).

    Article  CAS  Google Scholar 

  17. Y. H. Kim, E. D. Park, H. C. Lee and D. Lee, Appl. Catal. A: Gen., 366, 363 (2009).

    Article  CAS  Google Scholar 

  18. Y. H. Kim and E. D. Park, Appl. Catal. B: Environ., 96, 41 (2010).

    Article  CAS  Google Scholar 

  19. Y. H. Kim, S.-D. Yim and E. D. Park, Catal. Today, 185, 143 (2012).

    Article  CAS  Google Scholar 

  20. I. Rosso, M. Antonini, C. Galletti, G. Saracco and V. Specchia, Top. Catal., 30–31, 475 (2004).

    Article  Google Scholar 

  21. S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang and G. A. Somorjai, Nano Lett., 10, 2709 (2010).

    Article  CAS  Google Scholar 

  22. K. Qadir, S. H. Joo, B. S. Mun, D. R. Butcher, J. R. Renzas, F. Aksoy, Z. Liu, G. A. Somorjai and J. Y. Park, Nano Lett., 12, 5761 (2012).

    Article  CAS  Google Scholar 

  23. Y. H. Kim, J. E. Park, H. C. Lee, S. H. Choi and E. D. Park, Appl. Catal. B: Environ., 127, 129 (2012).

    Article  CAS  Google Scholar 

  24. M. Kipnis and E. Volnina, Appl. Catal. B: Environ., 98, 193 (2010).

    Article  CAS  Google Scholar 

  25. Y.-F. Han, M. J. Kahlich, M. Kinne and R. J. Behm, Phys. Chem. Chem. Phys., 4, 389 (2004).

    Article  Google Scholar 

  26. S. Tada, R. Kikuchi, K. Urasaki and S. Satokawa, Appl. Catal. A: Gen., 404, 149 (2011).

    Article  CAS  Google Scholar 

  27. B. Atalik and D. Uner, J. Catal., 241, 268 (2006).

    Article  CAS  Google Scholar 

  28. M. Hershowitz, R. Holliday, M. B. Cutlip and C. N. Kenney, J. Catal., 74, 408 (1982).

    Article  Google Scholar 

  29. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, J. Catal., 144, 175 (1993).

    Article  CAS  Google Scholar 

  30. M. Haruta, J. New Mater. Electrochem. Syst., 7, 163 (2004).

    CAS  Google Scholar 

  31. F. Gao and D.W. Goodman, Phys. Chem. Chem. Phys., 14, 6688 (2012).

    Article  CAS  Google Scholar 

  32. H. Over, Chem. Rev., 112, 3356 (2012).

    Article  CAS  Google Scholar 

  33. V. Narkhede, J. Aβmann and M. Muhler, Z. Phys. Chem., 219, 979 (2005).

    Article  CAS  Google Scholar 

  34. J. T. Kiss and R. D. Gonzalez, J. Phys. Chem., 88, 892 (1984).

    Article  CAS  Google Scholar 

  35. J. Aβmann, D. Crihan, M. Knapp, E. Lundgren, E. Loffler, M. Muhler, V. Narkhede, H. Over, M. Schmid, A. P. Seitsonen and P. Varga, Angew. Chem. Int. Ed., 44, 917 (2005).

    Article  Google Scholar 

  36. K. Qadir, S.M. Kim, H. Seo, B. S. Mun, F. A. Akgul, Z. Liu and J. Y. Park, J. Phys. Chem., C 117, 13108 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Duck Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.E., Park, E.D. Optimal Ru particle size for selective CO oxidation in H2 over Ru/κ-Al2O3 . Korean J. Chem. Eng. 31, 1985–1993 (2014). https://doi.org/10.1007/s11814-014-0140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0140-1

Keywords

Navigation