Skip to main content
Log in

Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ozone (O3) was employed as an oxygen source for the atomic layer deposition (ALD) of titanium dioxide (TiO2) based on tetrakis-dimethyl-amido titanium (TDMAT). The effects of deposition temperature and O3 feeding time on the film growth kinetics and physical/chemical properties of the TiO2 films were investigated. Film growth was possible at as low as 75 °C, and the growth rate (thickness/cycles) of TiO2 was minimally affected by varying the temperatures at 150–225 °C. Moreover, saturated growth behavior on the O3 feeding time was observed at longer than 0.5 s. Higher temperatures tend to provide films with lower levels of carbon impurities. The film thickness increased linearly as the number of cycles increased. With thicker films and at higher deposition temperatures, surface roughening tended to increase. The as-deposited films were amorphous regardless of the substrate temperatures and there was no change of crystal phase even after annealing at temperatures of 400–600 °C. The films deposited in 0.5 mm holes with an aspect ratio of 3: 1 showed an excellent conformality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. A. Durand, J. H. Brimaud, O. Hellman, H. Shibata, S. Sakuragi, Y. Makita, D. Gesbert and P. Meyrueis, Appl. Surf. Sci., 86, 122, (1995).

    Article  CAS  Google Scholar 

  2. J.-A. Jung, D. H. Kwak, D.W. Oh, D.M. Park and O.-B. Yang, Korean Chem. Eng. Res., 50, 11 (2012).

    CAS  Google Scholar 

  3. M. Keshmiri and T. Troczynski, J. Non-Crystal. Solids, 324, 289 (2003).

    Article  CAS  Google Scholar 

  4. M.G. Choi, K.Y. Kang, Y.-G. Lee and K.M. Kim, Korean Chem. Eng. Res., 50, 25 (2012).

    CAS  Google Scholar 

  5. H. Kim, G. P. Kushto, C.B. Arnold, Z. H. Kafafi and A. Pique, Appl. Phys. Lett., 85, 64 (2004).

    Article  Google Scholar 

  6. J. Yu, X. Zhao and Q. Zhao, Thin Solid Films, 379, 7 (2000).

    Article  CAS  Google Scholar 

  7. M. O. Abou-Helal and W. T. Seeber, Appl. Surf. Sci., 195, 53 (2002).

    Article  CAS  Google Scholar 

  8. M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal., B53, 209 (2004).

    Article  Google Scholar 

  9. H. Tada and M. Tanaka, Langmuir, 13, 360 (1997).

    Article  CAS  Google Scholar 

  10. Y. Suda, H. Kawasaki, T. Ueda and T. Ohshima, Thin Solid Films, 453-54, 162 (2004).

    Article  Google Scholar 

  11. H. Shin, D.-K. Jeong, J. Lee, M.M. Sung and J. Kim, Adv. Mater., 16, 1197 (2004).

    Article  CAS  Google Scholar 

  12. J.W. Lim, S. J. Yun and J. H. Lee, Electrochem. and Solid-State Lett., 7, F73 (2004).

    Article  CAS  Google Scholar 

  13. J. Dendooven, S. P. Sree, K. D. Keyser, D. Deduytsche, J. A. Martens, K. F. Ludwig and C. Detavernier, J. Phys. Chem. C, 115, 6605 (2011).

    Article  CAS  Google Scholar 

  14. S. K. Kim, S. Hoffmann-Eifert, M. Reiners and R. Waser, J. Electrochem. Soc., 158, D6 (2011).

    Article  CAS  Google Scholar 

  15. Q. Xie, J. Musschoot, D. Deduytsche, R. L. Van Meirhaeghe, C. Detavernier, S.V. Berghe, Y.-L. Jiang, G.-P. Ru, B.-Z. Li and X.-P. Qu, J. Electrochem. Soc., 155, H688 (2008).

    Article  CAS  Google Scholar 

  16. V. R. Rai and S. Agarwal, J. Phys. Chem. C, 112, 9552 (2008).

    Article  CAS  Google Scholar 

  17. S. K. Kim, S.Y. Lee, M. Seo, G.-J. Choi and C. S. Hwang, J. Appl. Phys., 102, 024109 (2007).

    Article  Google Scholar 

  18. R. Pheamhom, C. Sunwoo and D. H. Kim, J. Vac. Sci. Technol. A, 24, 1535 (2006).

    Article  CAS  Google Scholar 

  19. G. T. Lim and D. H. Kim, Thin Soild Films, 498, 254 (2006).

    Article  CAS  Google Scholar 

  20. M. Rose, J. Niinisto, P. Michalowski, L. Gerlich, L. Wilde, I. Endler and J.W. Bartha, J. Phys. Chem. C, 113, 21825 (2009).

    Article  CAS  Google Scholar 

  21. X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, D. Lee, T. E. Seidel, J. F. Barton, D. Pang and R.G. Gordon, J. Electrochem. Soc., 152, G213 (2005).

    Article  CAS  Google Scholar 

  22. R. L. Puurunen, J. Appl. Phys., 97, 121301 (2005).

    Article  Google Scholar 

  23. S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M.C. M. van de Sanden and W.M. M. Kessels, J. Electrochem. Sco., 157, 66 (2010).

    Article  Google Scholar 

  24. Y. Wang, M. Dai, M.-T. Ho, L. S. Wielunski and Y. J. Chabal, Appl. Phys. Lett., 90, 22906 (2007).

    Article  Google Scholar 

  25. G. R. Torres, T. Lindgren, J. Lu, C.G. Granqvist and S. E. Lindquist, J. Phys. Chem. B, 108, 5995 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Heyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YW., Kim, DH. Atomic layer deposition of TiO2 from tetrakis-dimethylamido-titanium and ozone. Korean J. Chem. Eng. 29, 969–973 (2012). https://doi.org/10.1007/s11814-012-0072-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0072-6

Key words

Navigation