Skip to main content
Log in

Inertial Krasnosel’skiǐ–Mann type hybrid algorithms for solving hierarchical fixed point problems

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we suggest two inertial Krasnosel’skiǐ–Mann type hybrid algorithms to approximate a solution of a hierarchical fixed point problem for nonexpansive mappings in Hilbert space. We prove strong convergence theorems for these algorithms and the conditions of the convergence are very weak comparing other algorithms for the hierarchical fixed point problems. Further, we derive some consequences from the main results. Finally, we present two academic numerical examples for comparing these two algorithms with the algorithm in Dong et al. (J Fixed Point Theory A 19(4):3097–3118, 2017), which illustrate the advantage of the proposed algorithms. The methods and results presented in this paper generalize and unify previously known corresponding methods and results of this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, F., Attouch, H.: An inertial proximalmethod for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  Google Scholar 

  3. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24(4), 232–256 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thersholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithm 71, 519–540 (2016)

    Article  MathSciNet  Google Scholar 

  7. Brézis, H.: Mathematical Studies 5. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. American Elsevier, North Holland (1973)

    Google Scholar 

  8. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  9. Cabot, A.: Proximal point algorithm controlled by a slowly vanishing term: application to hierarchical minimization. SIAM J. Optim. 15, 555–572 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chan, R.H., Ma, S., Yang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8(4), 2239–2267 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, P., Huang, J., Zhang, X.: A primal–dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29, 025011, 33 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, ThM: Inertial projection and contraction algorithms for variational inequalities. J. Global Optim. 70, 687–704 (2018)

    Article  MathSciNet  Google Scholar 

  13. Dong, Q., Jiang, J., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward–backward algorithm for monotone inclusions. J. Fixed Point Theory A 19(4), 3097–3118 (2017)

    Article  MathSciNet  Google Scholar 

  14. Dong, Q.L., Lu, Y.Y.: A new hybrid algorithm for a nonexpansive mapping. Fixed Point Theory Appl. 2015(37), 7 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, ThM: Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12(1), 87–102 (2018)

    Article  MathSciNet  Google Scholar 

  16. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  17. Goebel, K., Kirk, W.A.: Cambridge Studies in Advanced Mathematics. Topics in metric fixed point theory, 28th edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  18. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  19. He, S., Yang, C., Duan, P.: Realization of the hybrid method for Mann iterations. Appl. Math. Comput. 217, 4239–4247 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Iiduka, H.: Iterative algorithm for triple-hierarchical constrained noncnvex optimization problem and its application to network bandwith allocation. SIAM. J. Optim. 22, 862–878 (2012)

    Article  MathSciNet  Google Scholar 

  21. Iiduka, H.: Fixed point optimization algorithms for distributed optimization in networkd systems. SIAM. J. Optim. 23, 1–26 (2013)

    Article  MathSciNet  Google Scholar 

  22. Kazmi, K.R., Ali, R., Furkan, M.: Krasnoselski–Mann type iterative method for hierarchical fixed point problem and split mixed equilibrium problem. Numer. Algorithms 77, 289–308 (2018)

    Article  MathSciNet  Google Scholar 

  23. Kazmi, K.R., Ali, R., Furkan, M.: Hybrid iterative method for split monotone variational inclusion problem and hierarchical fixed point problem for a finite family of nonexpansive mappings. Numer. Algorithms 79, 499–527 (2018)

    Article  MathSciNet  Google Scholar 

  24. Kazmi, K.R., Rizvi, S.H., Ali, R.: A hybrid iterative method without extrapolating step for solving mixed equilibrium problem. Creative Math. Inf. 24(2), 163–170 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Kim, T.H., Xu, H.K.: Strong convergence of modified Mann iterations. Nonlinear Anal. 61, 51–60 (2005)

    Article  MathSciNet  Google Scholar 

  26. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  27. Lorenz, D., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51, 311–325 (2015)

    Article  MathSciNet  Google Scholar 

  28. Luo, Z.Q., Pang, J.S., Ralph, D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  29. Maingé, P.E.: Convergence theorem for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  Google Scholar 

  30. Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344, 876–887 (2008)

    Article  MathSciNet  Google Scholar 

  31. Malitsky, Y.V., Semenov, V.V.: A hybrid method without extrapolating step for solving variational inequality problems. J. Global Optim. 61, 193–202 (2015)

    Article  MathSciNet  Google Scholar 

  32. Matinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 64, 2400–2411 (2006)

    Article  MathSciNet  Google Scholar 

  33. Micchelli, C.A., Shen, L., Xu, Y.: Proximity algorithms for image models: denoising. Inverse Probl. 27(4), 045009 (2011)

    Article  MathSciNet  Google Scholar 

  34. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  Google Scholar 

  35. Moudafi, A., Maige, P.E.: Towards viscosity approximations of hierarchical fixed-point problems. Fixed Point Theory Appl. 2006(95453), 10 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Moudafi, A.: Krasnoselski–Mann iteration for hierarchical fixed-point problems. Inverse Probl. 23, 1635–1640 (2007)

    Article  MathSciNet  Google Scholar 

  37. Nadezhkina, N., Takahashi, W.: Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings. SIAM J. Optim. 16, 1230–1241 (2006)

    Article  MathSciNet  Google Scholar 

  38. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroup. J. Math. Anal. Appl. 279, 372–379 (2003)

    Article  MathSciNet  Google Scholar 

  39. Popov, L.D.: A modification of the Arrow–Hurwicz method for searching for saddle points. Mat. Zametki 28(5), 777–784 (1980)

    MathSciNet  MATH  Google Scholar 

  40. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  41. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  Google Scholar 

  42. Shehu, Y., Dong, Q.L., Jiang, D.: Single projection method for pseudo-monotone variational inequality in Hilbert spaces. Optimization 68, 385–409 (2019)

    Article  MathSciNet  Google Scholar 

  43. Shehu, Y., Iyiola, O.S.: Convergence analysis for the proximal split feasibility problem using an inertial extrapolation term method. J. Fixed Point Theory Appl. 19, 2483–2510 (2017)

    Article  MathSciNet  Google Scholar 

  44. Yamada, I., Ogura, N.: Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619–655 (2004)

    Article  MathSciNet  Google Scholar 

  45. Yang, Q., Zhao, J.: Generalized KM theorem and their applications. Inverse Probl. 22, 833–844 (2006)

    Article  MathSciNet  Google Scholar 

  46. Yao, Y., Liou, Y.C.: Weak and strong convergence of Krasnoselski–Mann iteration for hierarchical fixed-point problems. Inverse Probl. 24, 501–508 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript. Qiao-Li Dong is supported by the scientific research project of Tianjin Municipal Education Commission (no. 2018KJ253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Li Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, QL., Kazmi, K.R., Ali, R. et al. Inertial Krasnosel’skiǐ–Mann type hybrid algorithms for solving hierarchical fixed point problems. J. Fixed Point Theory Appl. 21, 57 (2019). https://doi.org/10.1007/s11784-019-0699-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-019-0699-6

Keywords

Mathematics Subject Classification

Navigation